New Dignus Features to ease transition to z/TPF

Dignus Product Milestones

First Customer Shipment Systems/C in 1998
First TPF customer deployment in 1999

First Commercial Linux 390 compiler 2000
Systems/ASM Spring 2001

Systems/C++ 2002

Local Linker for Cross Mode 2004

DIGNUS

Research & Development

« Member of IBM ‘Partners In Development’ Program
« Development Office in Raleigh North Carolina

« Dedication to the Development of Mainframe developer software for
z/OS, TPF, z/TPF, z/NM.....

Some of our Customers:

Neon Data Direct Nationwide Ins. Australia Securities

Serena Software Sosa Cousins Voltage Software
CONNX IBM z/OS, z/VM Anchor Software
EMC Sun Storagetek IBM TPF Lab

DIMIA BMC Software Referential Software
Software AG Pitney Bowes Softbase Systems
John Hancock Montreal Transit DesdJardin Financial

DIGNUS

TPF Customer Success

Amadeus

“What we particularly appreciate with Dignus is their compatibility with
IBM’s compiler. Mixing code compiled on IBM with Systems/C and

Systems/C++ is transparent...just works,” says Pierre Enault, Senior
Systems Analyst -

IBM users and partnership

-IBM z/OS and IBM z/VM development
* IBM TPF Lab and z/TPF Evaluation

 IBM Tivoli Runtime implementation

IBM TPF Lab and z/TPF Evaluation

IBM will certify support for the Dignus Compilers as an
alternative to GNU C and C++

« Target Time Frames

IBM Systems/C & Systems/C++ Testing Completed

* IBM Contact: Bob Dryfoos, TPF Lab Manager dryfoos@us.ibm.com

DIGNUE

z/Linux

Dignhus recommended move to z/TPF

—_— Single Source 000 B
:/ .. Z/lLinux g oo §§\

TPF & z/TPF Value Adds

« The ability to rapidly develop TPF programs for
z/Linux or TPF 4.1 with professional compiler support
while maintaining IBM compatibility.

« Cross Mode Compiling for faster turnaround

DIGNUE

Latest Dignus Features

DCC & DCXX

#pragma options (inline)

Latest Dignus Features

#pragma options (inline)

Attempts to inline functions instead of generating calls to those functions, for
improved performance. When the INLINE compiler option is in effect, the compiler
places the code for selected subprograms at the point of call; this is called inlining.

It eliminates the linkage overhead and exposes the entire inlined subprogram for

DIGNUS

Latest Dignus Features

#pragma inline (name)

“The z/OS #pragma inline directive specifies whether or not the function is to be
inlined. The pragma can be anywhere in the source, but must be at file scope.
#pragma inline has no effect if you have not specified the INLINE or the OPT

Latest Dignus Features

#pragma noinline (name)

“The z/OS #pragma inline directive specifies whether or not the function is to be
inlined. The pragma can be anywhere in the source, but must be at file scope.
#pragma inline has no effect if you have not specified the INLINE or the OPT

Latest Dignus Features

DASM

« Support HLASM options via -options=

 Rename DASM to ASMA90 and it operates with the
same command line options as ASMA90; integrates with
maketpf

_string

DIGNUS

DASM (Dignus Assembler)

IBM Support Statement

* OEM assemblers available on the market that can run on
the desktop

“IBM has used Dignus internally to the extent we are comfortable

.’ oy o L] ‘ L]
DM baiilp A (] Droplen oNOriinge /VI Vv D ()

New Dignus Features
« _Packed support
#pragma map

« #pragma pack

« Rename header files with no source changes via

_Packed is fully supported, for example:

struct my_struct {
char c;
int i;

}

func ()
{
struct my_ struct unpacked; /* normal alignment */
Packed struct my struct packed; /* packed alignemnt
int i;

i = sizeof (unpacked);
i = sizeof (packed);

_Packed example Structure Map from Dignus compiler listing:

oW e g STRUCTURE MAPS * ok ok kK

Aggregate map for: struct my_ struct Total size: 8 bytes

Offset
Bytes (Bits)

Length
Bytes (Bits)

Member Name

I
I
I
0 | 1
I
I

Cc
1 3 ***PADDING* * *
4 4 i

DIGNUS

#pragma map example:

Dignus implements #pragma map by generating the map’d-to
name. For example:

#fpragma map (a_very long name, "SHORT")
a_very_ long name ()

{

return 5;

}

#pragma map
IBM’s solution to #pragma map is to introduce a duplicate label. This
allows a reference, but does not actually change the original name. Programs
can reference the new name, but the “original” name continues to exist causing

potential problems:

IBM C source with ___asm_ GCC Generates:

pragma pack
IBM has the following solution for changes to

support #pragma pack:

Complete the following steps to convert #pragma pack statements:
Convert each #pragma pack(packed) statement to #pragma pack(1).
Convert each #pragma pack(twobyte) statement to #pragma pack(2).
Convert each #pragma pack(full) statement to #pragma pack(4).

For the GCC compiler, the #pragma pack() statement returns to natural alignment. However, for the
z/0S compiler, the #pragma pack() statement is a 4-byte alignment and the #pragma pack (reset)
statement returns alignment to the previous rule. The best way to handle these different meanings is to
do the following:

DIGNUS

Decimal data types supported in z/TPF:

BNZ 4064
***xx*x*x End of Prologue
*
§ orrx _Decimal(5,1) d,q,r;
Example: #owx
kxx q=1;
LA 14, .LCO-.LTO (13)
MVC 539(3,15),0(14) # q
$ xxx r = 2;
func () LA 14, .LC1-.LTO(13)
MVC 542(3,15),0(14) # r
{ # xxx
. Hiaakpak d = g+r;
_Decimal (5,1) d,q,r; MVC 501(3,15),539(15)
XC 500(1,15),500 (15)
AP 500(4,15),542(3,15)
1: MVC 517(3,15),501(15)
9 ’ MVC 536(3,15),517(15) # d
r — 2; # * k% }

$$SHDRMAP

Maps a source #include name to another; useful for moving between
a mainframe and z/Linux environment with no change to the source.

Example $$HDRMAP:
"MYPDS(MEM)" my_directory/mem.h
DIR cinc my_directory

#include "MYPDS (MEM)" would actually look for 'my_directory/mem.h'
as if the souce had #include "my_directory/mem.h".

DIGNUS

Dignus Partners for z/TPF

Sosa Cousins

LCM Load Control Management

* Coordinates development and promotion process

Dignus Partners for z/TPF

TPF Software
TPF/GI®

Interactive Client/Server Testing for TPF

Dignus Partners for z/TPF
TPF Toolkit

« The TPF Toolkit source scan tools that help you convert TPF 4.1 application
code to single source and then maintain this single source until your migration
to z/TPF is complete.

*registered trademark of IBM

Dighus Summary

* Integration with TPF/Gl, LCM & IBM Toolkit
* IBM plug Compatibility
* TPF 4.1 & z/Linux support

DIGNUS

NEXT STEPS

Questions??

Thank you for coming !

