Systems/C Utilities
Version 2.30

Copyright (©) 2024, Dignus, LLC

Systems/C Utilities
Version 2.30

Copyright (© 2024 Dignus LLC, 8378 Six Forks Road Suite 203, Raleigh NC, 27615.
World rights reserved. No part of this publication may be stored in a retrieval
system, transmitted, or reproduced in any way, including but not limited to pho-
tocopy, photograph, magnetic or other record, without the prior agreement and
written permission of the publisher.

This product includes software developed by the University of California, Berkeley
and its contributors.

Copyright (c¢) 1990, 1993
The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modifica-
tion, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. All adverting materials mentioning features or use of this software must
display the following acknowledgement:

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIB-
UTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIB-
UTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTER-
RUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

IBM, S/390, zSeries, OS/390, zOS, MVS, VM, CMS, HLASM, and High Level As-

sembler are registered trademarks of International Business Machines Corporation.

UNIX is a registered trademark in the United States and/or other countries licensed
exclusively through X/Open Company Limited.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States and other countries.

ii

Dignus, Systems/C, Systems/C++ and Systems/ASM are registered trademarks of
Dignus, LLC.

iii

Contents

How to use this book 1
Systems/C Utilities Overview 3
PLINK 5
Using PLINK e 5
PLINK options« o 6

PLINK control statements 18

PLINK autocall processing 20
Running PLINK0 oo 22

Using PLINK to pre-link OpenEdition programs 23

Using PLINK to pre-link IBM C objects 23

Using PLINK to directly create load modules 24

Using PLINK to link programs on OS/390 25
Systems/C shared libraries 27
Shared library files o L 27

Data references 27

Data definitions o L 27
Functions 28
Runtime support 28
Building a shared library o000 28
Exampleo 30
DPDSLIB 31
Using DPDSLIB 31
Running DPDSLIB 31
DPDSLIB examples oo 31

DAR 33
Using DAR 33
Running DAR o 33

DAR options 34

DAR examples 37

Systems/C Utilities v

DRANLIB 39

Using DRANLIB 39
Running DRANLIB 39
DRANLIB options i 40
DRANLIB examples 40

GOFF2XSD 41

Using GOFF2XSD o 41

Running GOFF2XSD 42
DCCPC 43

Using DCCPC e 43
Running DCCPC o 43
DCCPC Options 44
The —voption 47

DB2PPC 49

Using DB2PPC 49
Running DB2PPC o 49
Defining DB2PP global variables 50
DB2PPC Optionso 51
The —voption 56
The —fdb2ver=vN option (set DB2 compatibility version) 56
The —fcesid=num option (set CCSID) 56

D2S 57

Using D2S o 57
D2S Options oL 59
The —voption 69

The ~dsOxl option (accept DS OXL(n) as a synonym for EQU n) . . . 69

ASCII/EBCDIC Translation Table 71

vi

How to use this book

This book describes the utility programs provided with the Systems/C and Sys-
tems/C++ products and how to use these to create OS/390 programs.

For more information about Systems/C or Systems/C++, see the Systems/C or
Systems/C++ manual.

For more information, contact Dignus, LLC at (919) 676-0847, or visit
http://www.dignus.com.

Systems/C Utilities 1

2 Systems,/C Utilities

Systems/C Utilities Overview

The Systems/C utilities are programs which help create and manage program cre-
ation and object libraries.

The utilities include:

PLINK

DPDSLIB

DAR

DRANLIB

GOFF2XSD

DCCPC

DB2PPC

D2S

The Systems/C pre-linker and linker. The pre-linker performs AU-
TOCALL name resolution to produce the object file that will be
linked to become the final executable program, either in a PDS,
PDSE or in the Hierarchical File System (HFS). On cross-platform
hosts, PLINK can also perform the final linking step locally, cre-
ating a TSO TRANSMIT file which contains the final OS/390 load
module. This avoids any linking on the host.

A utility which allows “autocalling” of long symbol names within a
PDS on OS/390 or z/0S.

The Systems/C archive librarian. DAR gathers together object files
into a single entity which can be used for pre-linking.

The Systems/C ranlib utility. DRANLIB creates a symbol definition
table in a DAR archive so that AUTOCALL resolution can find
the defining instance of a symbol without depending on the DAR
member name.

GOFF2XSD converts GOFF objects (generated by the IBM HLASM
assembler) into XSD objects.

A CICS Command Processor for C source. Converts “EXEC CICS”
commands into the appropriate C code to interface with the CICS
run-time.

A DB2 Command Processor for C source. Converts “EXEC SQL”
commands into the appropriate C code to interface with the DB2
run-time.

A DSECT to struct converter. Converts DSECTSs found in assem-
bly ADATA files into C struct definitions.

Systems/C Utilities 3

4 Systems/C Utilities

PLINK

Using PLINK

PLINK gathers the input objects together, performing AUTOCALL resolution
where appropriate, producing a single file which can then be processed by the IBM
BINDER or IBM linker IEWL on older systems. Optionally PLINK can also
perform the final linking step, producing a TSO TRANSMIT file containing the
resulting load module.

Input to PLINK can be either object data sets, DAR archive libraries, LOAD
modules within TSO TRANSMIT files, or control statements. PLINK supports
GOFF, XOBJ and OBJ data set file formats. GOFF format object data sets must
be fixed block with an LRECL=80.

When PLINK discovers an IBM LE object deck (an appropriately decorated XOBJ
file), it performs the functions of the IBM LE pre-linker. Otherwise, as PLINK
gathers objects, it performs the Systems/C pre-linking functions.

After performing pre-linking functions, if the —b option is specified (indicating “bind-
ing”), PLINK performs the functions of the IBM BINDER, resolving any remain-
ing unresolved symbols, performing relocations and producing the resulting TSO
TRANSMIT module which describes the load module. If the —bonly option is spec-
ified, no pre-linking functions are applied.

When generating a TSO TRANSMIT file, PLINK will replace just the named
member (specified by —syslmod), preserving any other pre-existing LOAD module
members.

For Systems/C pre-linking, PLINK examines the defined symbols, looking for a
Systems/C initialization script section. Furthermore, if the —fnosname option was
specified on a DCC or DCXX command line, PLINK provides unique section
names for the object. During this process, PLINK will produce warnings on dis-
covering any duplicate definitions or duplicate section names.

At the end of the generated file, PLINK will append a section containing pointers
to the located initialization script sections, which the Systems/C run-time library
will use for re-entrant initialization. Also, if needed for C++, PLINK will generate

Systems/C Utilities 5

the appropriate C++ constructor/destructor tables and place that in the resulting
object.

If PLINK discovers any Dignus debugging information embedded in the object
deck, PLINK will gather this information together and apply appropriate trans-
formations to make it ready to use by a debugger. PLINK will then generate a
debugging information file that is associated with the eventual program (controlled
by the —dbg=filename option).

On cross-platform hosts, PLINK may be employed to gather the objects together
into one file for transferring to the mainframe for the final link step, or can perform
the final linking itself, producing a load-module embedded in a TSO TRANSMIT
file.

Unless the —b or —bonly option was specified, the output of PLINK is then intended
to be processed by the IBM BINDER or linker to produce the executable load
module. By default, the output format will be the same as the input format (either
OBJ or GOFF), except that XOBJ is converted to GOFF (controlled by the —goff
/ —esd / —xsd options).

PLINK options

PLINK supports the following options. Any remaining command-line parameters
are treated as input file names. Input files must be OBJ object decks, XOBJ object
decks, GOFF object decks, DAR archives, or TSO TRANSMIT files of LOAD
libraries.

Also, on Windows, z/0S and OS/390 host platforms, PLINK supports the —@filename
option. The contents of the specified file are inserted in the command line at the
point where the —@filename appears. This provides a mechanism for specifying com-
mand lines which are longer than the operating system supports.

—ac=n Specify the authorized program facility (APF) authorization code
of the final executable, specified in the TSO transmit file, when the
—b or —bonly option is enabled. The authorization code n must be
an integer between 0 and 255. The default value is 0.

—allow_ref=name The —allow_ref option defines a name that PLINK will not consider
unresolved after all processing. After all AUTOCALL processing is
performed, PLINK produces a list of unresolved references, and
appropriately sets the return code. Symbol names specified via the
—allow_ref option will not appear in this output, or affect the return
code. Note, however, that —allow_ref does not provide a definition
of the symbol, thus PLINK will continue to try and resolve any
references to the name via normal AUTOCALL processing.

6 Systems/C Utilities

—amode=amode-setting Specify the AMODE setting of the final executable when the —b

—asm

—blksize=N

—bonly

~bvse

—cmap [=file/

—dbg=filename

or —bonly option is enabled. amode-setting can be either any, min,
24, 31 or 64.

To be used with —shared, this specifies that it is step #1 of building
a shared library, to produce the sodef.asm and soref .asm files.

After performing normal pre-linking functions, PLINK will “bind”
the objects, producing a load module. On cross-platform hosts,
this causes PLINK to produce (or update, if it already exists) a
TSO TRANSMIT file which can then be reinstated with the TSO
RECEIVE command on the mainframe platform.

Sets the block size of the resulting load module when the —b or
—-bonly options are specified. If —blksize is not specified, the default
block size is 27998, the optimum block size for a 3390 device.

Similar to —b except that normal pre-linking functions are not per-
formed. Only the “binding” step is performed and a TSO TRANS-
MIT file is produced. This can be helpful if the object has been
previously processed by PLINK.

Perform the normal steps for the —b option, but generate a VSE
"unloaded PHASE” instead of a TSO TRANSMIT file.

An ”unloaded PHASE” is an object deck decorated with a starting
description card. Almost all relocation processing has been per-

formed so that the object deck can simply be loaded to generate the
PHASE on VSE.

The VSE linker does not support relocations larger than 4 bytes. In
this case, PLINK will truncate the relocation and adjust the offset
so that it becomes a 4-byte relocation. If the relocation includes a
negative action, PLINK will generate a warning, as subtractions
may not underflow correctly in this situation.

Causes PLINK to produce a report of the CSECT names assigned
to input objects which were compiled with the —fnosname option.
When —fnosname is used, PLINK assigns a unique name to the
various sections produced by the compiler. This map can be helpful
when referring back to particular objects based on the run-time
section name. If =file is specified, the map is written to the specified
file name, otherwise it is written to the stdout file stream.

Specifies the name of any PLINK produced debugging information
file. If no —dbg= option is specified, PLINK uses a default name.

The default name for the debugging information file on OS/390 and
z/OS is “//DDN:SYSDBG”, on cross-platform hosts it is “p.dbg”.

-DD=NAME=template Specify a “DD” definition to use for search for INCLUDE

cards. The NAME specified is a DD-name that might appear as

Systems/C Utilities 7

—esd

a PDS name on an INCLUDE card. The template specified is a
search template which is expanded with the member name. The
search template rules are the same as those used for AUTOCALL
name searches. The template may be the name of an archive or TSO
TRANSMIT file. See the section on AUTOCALL searches for more

information about template expansion.

The section on INCLUDE statement processing describes the use of
the —DD option further.

Generate output in object module format with symbols defined by
ESD cards. Symbol names longer than 8 characters will be silently
truncated (unless they are remapped by another option like —p).

—except=namel,name2,... Specifies names that are exceptions to the “rename all”

—exclude_allrefs

rule when the —renameall option is specified.

The —renameall option renames all symbols except for names spec-
ified in the —except options.

More than one name can be specified, each name is separated by
commas.

The —except option can be specified multiple times.

Specifies that no external shared references will be generated in the
sodef .asm file. That way, after linking a shared library, there is
no further AUTOCALL attempt to resolve those symbols. That
AUTOCALL attempt usually fails and, in addition, makes it hard
to later determine which shared library was responsible for an un-
defined symbol reference.

—exclude_refsfile=filename Specifies a file which contains a list of symbols which will

not have references generated in soref.asm, when PLINK is run
with —shared —asm. The file is generally going to be generated by
—sodefnames=filename. In this way, an autocall library of shared
library stubs can be generated (instead of an SO object) that does
not contain any expensive external shared references for symbols
which are defined locally to the shared library.

When —sodefnames is used to create the file, PLINK should be
run with all of the objects in the shared library specified on the
command line, so that all of the defined symbols are known. Then
—exclude_refsfile is used when running PLINK on individual mem-
bers of the shared library, so that PLINK will know which symbols
are defined in the other members of this same library.

—exclude-symbols=symbols The symbols which are specified (in a comma-separated

list) will not have any external definitions generated for them in the
sodef . asm file when PLINK is run with —shared —asm. This allows
certain symbols to be treated as global within the library, but not
exported to be visible outside of the shared library.

8 Systems/C Utilities

—fdaranycase

When PLINK performs autocall resolution using DAR archives,
if there is no DRANLIB-generated symbol table, in the archive,
PLINK uses the name of the member as the definition name. In
this case, PLINK matches the reference to the DAR member
name, much as PDS-based lookup would be performed in a tra-
ditional z/OS environment.

By default, PLINK treats the member names and reference names
as case-specific, matching only references with the exactly specified
DAR archive member name.

If the —fdaranycase option is specified, PLINK will ignore case
differences on this match.

This can better approximate the PDS lookup that is performed on
z/0O8, where the names are all converted to upper-case by default.

—fdllname=DLLNAME When pre-linking IBM DLL objects, the —fdllname option

—fkeepweaktxt

—fmre

specifies the name of the resulting DLL. It is similar to the DLLNAME
option available on the IBM pre-linker.

If no —fdllname option is specified, PLINK uses the name TEMPNAME.

The Systems/C and Systems/C++ compilers allow for the mul-
tiple definition of weak functions. This feature is frequently em-
ployed by Systems/C++ to accomplish automatic template in-
stantiation.

PLINK handles duplicate weak function definitions by appropri-
ately adjusting or deleting duplicate ESD entries and adjusting RLD
relocation entries. Further PLINK actually removes the function
code bytes from the resulting object file, creating a much smaller
resulting object file for final linking.

There could be instances, however, where it would be desirable to re-
tain the function code bytes in the resulting object. If —fkeepweaktzt
is specified, PLINK will appropriately adjust ESD and RLD entries,
but will not delete the duplicate function code. The code will remain
in the resulting object, but will not be referenced in any fashion.

Specifies that mainframe return code styles are to be used. This is
the default on all platforms, but may change in the future. When
—fmrc is enabled, PLINK returns a 0 for no warnings/errors, 4 if
any warnings were generated and 8 or greater for errors.

—fmapdata=wvalue Specify a value which is passed as a character string to the map

function.

—fmapfunc=location On Windows and UNIX-style platforms, the —-mapfunc option

provides the name of the DLL or shared-library to load that imple-
ments the map function.

The DLL (or shared library) should have an entry point named
map that PLINK will invoke to determine name mapping in the
resulting object.

Systems/C Utilities 9

On z/08, this specifies the name of the load module which is LOAD’d.
The entry-point for this load module implements the map function,
using standard z/OS 31-bit OS linkage.

PLINK will invoke the map function for each symbol name that
needs to be mapped from a long name to a short name. If the
—frenameall option is specified, this function will be invoked for
all symbols. The map function provides the new symbol name (in
EBCDIC) for PLINK to place in the resulting object.

The map function is defined as:

void

map(int flag, void **space, char *user_parm,
const char *orig_name, const int orig_name_len,
char **result_name,
int *result_name_len);

flag The flag parameter is an integer value that passes
indicators to the map function.
The lower two bits of the flag value have the follow-
ing meanings:

0x01 Initial “set up” invocation.
0x02 Final “termination” invocation.
0x03 File name mapping request.

When the lower two bits of flag have the value 0x01
or 0x02, indicating “set up” and “termination”, the
other parameters are ignored.

When the lower two bits of flag have the value 0x03
the source name to map is based on the input file
name. PLINK uses the mapped name value to cre-
ate PLINK-generated names for various purposes,
mostly related to C++ facilities.

When the lower two bits of flag are 0x00, flag will
then indicate the type of symbol being mapped. In
this situation, flag will have the values:

0x04 Symbol is an SD (Section Defini-
tion)
0x08 Symbol is an ED (Element Defini-
tion)
0x0C Symbol is an LD (Label Definition)
0x10 Symbol is an PR (Psuedo Register
Reference)
0x14 Symbol is an ER (External Refer-
ence)
space space is a pointer to a (void *) pointer which can

be useful for the map() function to pass data to

10 Systems/C Utilities

subsequent invocations. This pointer will be main-
tained across invocations of the map () function. Thus,
the function can allocate space that will be available
to subsequent invocations.

user_parm user_parm is a character pointer that provides the
value specified in the —fmapdata PLINK option.

orig-name orig-name is a pointer the original symbol name.

orig_name_len orig_name_len is the number of characters in the
original symbol name.

result_name This is a pointer to a character pointer, thus it
should be set to the address of a buffer containing
the name PLINK should place in the object deck.

result_name_len This is a pointer to an integer which contains the
number of characters in the result_name.

—fmsgtostdout Normally, PLINK writes error and warning messages to the stderr
file stream. —fmsgtostdout causes the messages to be written to the
stdout stream. This can be helpful on some Windows platforms
that don’t allow redirection of the stderr stream.

—fnomrc Specifies that UNIX (non-mainframe) return code styles are to be
used. In a future release, this may become the default for cross-
platform hosts (currently —fmre is the default on all platforms.)
When —fnomrce is enabled, PLINK returns a 0 even if any warnings
were generated. If an error is generated, PLINK will return a
non-zero value. This is helpful when incorporating PLINK into
cross-platform build facilities (e.g. make) that expect a zero/non-
zero return code.

—fquiet The —fquiet option causes plink to suppress all diagnostic output.
Only error messages will be generated.

~from=node.uid Specify values for the from node name (INMFNODE) and from UID
(INMFUID) headers in TSO TRANSMIT files. The UID is optional.
The default is DIGNUS.PLINK. This option only has an effect when
combined with —b or —bonly.

—fsplitdata=walue Specify a value which is passed as a character string to the splitnm
function.

—fsplitfunc=location On Windows and UNIX-style platforms, the —splitfunc option
provides the name of the DLL or shared-library to load that imple-
ments the splitnm function.

The DLL (or shared library) should have an entry point named
splitnm that PLINK will invoke to determine the output “split”
object name.

Systems/C Utilities 11

On z/08, this specifies the name of the load module which is LOAD’d.
The entry-point for this load module implements the splitnm func-
tion, using standard z/OS 31-bit OS linkage.

PLINK will invoke the splitnm function for each new object deck
it needs to create. splitnm computes the resulting name of that
object deck, or if that object deck should not be written, it returns

zZero.

The splitnm function is defined as:

int

splitnm(int flag, void **space, char *user_parm,

flag

space

user_parm
id

orig-name

member_name

result

12 Systems/C Utilities

int id, char *orig_name, char *member_name,
unsigned char *result);

The flag parameter is an integer value that describes
the kind of input file. flag can have any of these
values logically OR’d together:

0x04 The file is a primary input file

0x08 The file is a primary include file

0x10 The file is a secondary include file

0x20 The file was included via autocall
name resolution

0x40 The file was created by PLINK

0x40000000 The file is a LOAD module (mem-
ber of a TRANSMIT module)

0x80000000 The file was a member of a DAR
archive
flag will be 0x01 for the initial “set up” invocation,
and 0x02 for the final “termination” invocation.

space is a pointer to a (void *) pointer which can
be useful for the splitnm() function to pass data
to subsequent invocations.

user_parm is the character pointer that provides the
value specified in the —fsplitdata PLINK option.
id is an integer identified assigned by PLINK to
the input object file.

orig_name is the original input file name

If the flag value’s upper bit (0x80000000) is set,
then member_name specifies the member name of
the DAR archive. If the 0x40000000 bit is set then

member_name specifies the member within the TSO
TRANSMIT module.

result is a pointer to a buffer of 1024 bytes that on
return should contain the file name where PLINK
will write the output file.

The return value from the splitnm function indicates if the file
should be produced or not. If the return value is zero, then the
output is not generated.

The splitnm function is invoked with two “special” flag values in-
dicating initial start-up and termination. If the value of flag is 0x01
then this is the initial invocation of the splitnm function. In this
case the other arguments are invalid and intended to be ignored.
This is provided so the splitnm function can perform whatever
preparation tasks might be needed for proper function. Similarly,
if the flag value is 0x02, this is the terminating invocation, so that
splitnm can perform any termination functions it may require. As
with the initial invocation, when flag is 0x02, the other parameters
should be ignored.

—fsplitloc=location Specify the location in which to write the component object decks.

—fsplitobjs=file

—fsysdefsd=file

—goff

—Itemplate

—lar

—Lsearchdir

On Windows and UNIX-style platforms, this is a directory. On
z/OS this is a PDS.

The —fsplitobjs option indicates that PLINK should “split” the con-
glomerate output into it’s constituent pieces. The combined object
deck, including any PLINK-generated portions is split into indi-
vidual object files based on the input object deck names.

This option is not available if the —b or —bonly option is specified.

Specify the name of the PLINK-generated definition file when pre-
linking IBM DLL objects. This is the same as the SYSDEFSD DD
specified on the IBM prelinker.

When pre-linking IBM DLL objects that export symbols PLINK
will create the appropriate cards and write them to the named file.

If —fsysdefsd is not specified, PLINK writes the DLL definitions to
a file name “sysdefsd”.

Generate output in Generalized Object File Format (GOFF). GOFF
output is capable of representing all of the information from any of
the input object formats.

Provide a path to search for INCLUDE cards that do not specify a
DD. The template will be expanded with the INCLUDEd name. An
archive or TSO TRANSMIT file may be specified for searching.
This option may be used any number of times.

Add an archive file ar to the list of files to link. This option may be
used any number of times. PLINK will search its —L path-list for
occurrences of the file named libar.a for every ar specified.

This command adds the path searchdir to the list of paths that

PLINK will search for DAR archive libraries. This option may be
used any number of times.

Systems/C Utilities 13

—map

—noprem

—noxmit

—ofile

P

Causes PLINK to produce a load-module offset map when the —b
or —bonly option is enabled.

Disables PLINK’s processing of DXDs, CXDs and Q-cons. See the
—prem option for more details.

Normally, when the —b or —bonly options are specified, PLINK
creates a TSO transmit file containing the resulting load module.
The —noxmit option causes PLINK to simply write the “raw” load
module records. When —noxmit is specified, the resulting file is not
in TSO transmit format.

Note that the load module records do not contain the module’s
starting offset and other information normally stored in the load
module’s PDS directory entry.

The —o option specifies the name of the output file. On cross-
platform hosts, PLINK writes to the file p.out by default; on
0S/390 and z/0OS PLINK writes to the file //DDN:SYSMOD.

If the —b or —bonly options were specified, the output file is a fully
realized load module in TSO TRANSMIT format.

The —p option causes PLINK to process the incoming files, convert-
ing any long symbol entries to 8 characters. When a symbol entry
longer than 8 characters is discovered, PLINK replaces it with a
name of the form STnnnnnn, where nnnnnnnn is a unique identi-
fier given to the name. If the ultimate target of the load module
is a PDS, and not a PDSE, then using the —p option will properly
shorten the incoming names so the IBM binder will be able to prop-
erly link into the PDS. The PLINK output will display long names
that are mapped to shorter ones.

An z may be appended to the —p option. As well as converting long
symbols to unique shorted names, specifying —pz causes PLINK to
convert XSD or GOFF object cards into ESD cards. Older versions of
the IBM linker only handle ESD-type input. Specifying —pz cause
PLINK to generate output suitable for these older linkers.

As well, a u may appened to the —p option which alters the mapping
applied. By default PLINK only maps names which are longer than
8 characters. When u is specified in the —p option, PLINK will map
any names that are longer than 8 characters, or which have lower-
case EBCDIC letters in them. Furthermore, PLINK will attempt
to construct a short-name based on the original name. It will use
the first characters from the original name (up to 8) and upper-case
those. Also, any underscore character (-) will be converted to an
at-sign (@). If this contructed name does not already exist, then
that will be the chosen “short name”. If the construct name does
already exist (because it originally existed, or because a previously
constructed name is already in place), then PLINK will create a
“short name” using the STnnnnnn mapping.

14 Systems/C Utilities

The u and z can appear in any order.

Note that when STnnnnnn is used the @ST portion can be altered
with the —prefiz option.

—prefix=CCC Typically, when renaming long names to unique short names, PLINK
composes a name with a 3-character prefix (@ST) followed by 5 dig-
its.

The —prefix option can be used to specify an alternative prefix. Up
to 3 letters can be specified. The first letter should be a character,
or an ‘@’ character, or a ‘#’ character.

This can be helpful if the resulting objects are intended to be linked
with another runtime environment. For example, the IBM runtime
environment, since the IBM pre-linker also uses the prefix @ST.

—prem The —prem option causes PLINK to internally process DXD defi-
nitions and handle any CXD and Q-con relocations. The gathered
DXD definitions are collectively called the Pseudo Register Vector or
PRV. PLINK will gather DXD definitions into the PRV, assigning
offsets to each. Then, any Q-cons which reference the elements of
the PRV will be replaced with their offset. Any CXD relocations will
be replaced with the total size of the PRV. PLINK will also produce
a table indicating each DXD discovered, and its assigned offset. The
PRV is used by the Dignus compilers to produce re-entrant code.

In order to properly produce the PRV table, all of the objects that
contain DXDs, CXDs and Q-cons should be presented as input to
PLINK.

The —noprem option can be used to disable this processing, if —noprem
is specified, PLINK passes the DXD definitions and Q-con and CXD
relocations through to the resulting object file.

Older IBM linkers, particularly for CMS and VSE, do not properly
handle a PRV larger than 4K bytes. Thus, when generating code for
these platform, —prem should be used.

The —prem setting is the default.

- Allow for re-running PLINK on the resulting object. If —ris spec-
ified, the result from PLINK will have all possible AUTOCALL
operations performed, with no other processing. The resulting file
can subsequently be reprocessed by PLINK to perform the other,
normal processing. When —r is specified, the —p and —pz options will
be ignored. Also, any unresolved references will not be diagnosed,
as it is assumed they will be resolved in a subsequent PLINK step.

—refresh Specify that the REFRESHABLE flag of the final executable should
be set when the —b or —bonly option is enabled. —refresh may be
abbreviated to —refr.

Systems/C Utilities 15

—renameall

—rent

—reuse

The —renameall option causes PLINK to rename all symbols in
the generated object. This can be helpful when linking Systems/C
DCALL modules with other runtime environments where the names
might clash. For example, when linking a Systems/C DCALL’d
object with IBM C/C++, or SAS C/C++.

The names chosen consist of a 3-character prefix, followed by a 5-
digit number. By default, the 3-character prefix is @ST, but can be
altered with the —prefix option. The —fmapfunc option can be used
to provide a user-written function that controls the name mapping.

When -renameall is specified, all symbols are renamed except for
any specified via the —except option.

Thus, a typical approach would be to determine which symbols are
meant to be visible to the calling program. Specify these names in
the —except list, and specify the —renameall option. The resulting
PLINK.-generated object deck will have all of the symbols renamed
except for the ones that need to be visible to any calling environ-
ment.

Specify that the RENT flag of the final executable should be set when
the —b or —bonly option is enabled.

Specify that the REUSE flag of the final executable should be set
when the -b or —bonly option is enabled.

—rmode=rmode-setting Specify the RMODE setting of the final executable when the —b

—Stemplate

—shared

—showctl

or —bonly option is enabled. rmode-setting can be either any or 24.

The -S§ option specifies a template which is expanded with the
AUTOCALL reference name. Any &m and &M characters found in
the template are replaced with the reference name, &m indicates
that the lower-case version of the name should be used; &M indi-
cates upper-case. On OS/390, PLINK has a default —S option
of —S//DDN:SYSLIB(&M). Note that —S templates are automatically
added to the ~-DD=SYSLIB list.

Specifies that PLINK is being used to create a shared library.
If —asm is also specified then it is producing the sodef.asm and
soref .asm files created in step #1. Otherwise, it is producing the
shared library module created in step #2.

Indicate that PLINK should provide information messages about
any control cards encountered in the input. PLINK will produce
messages of the form

plink: info: control card: text-of-card

where text-of-card is the text as it appeared on the input control
card.

16 Systems/C Utilities

—sodef=filename Provides an alternate filename for the sodef . asm file generated with

—shared —asm.

—sodefnames=filename Provides a filename into which the list of all defined symbols

—solstub=name

—SOoname=naime

—soref=filename

—syslmod=S555

—to=node.uid

—xref

will be written if PLINK is run with —shared —asm. This file is
often created for later use with —exclude_refsfile=filename to avoid
generating external references to symbols which are defined within
the current shared library.

Provides an alternative to DCCLSTUB for the name of the assembly
macro which is used to produce shared library stub routines.

Provides the name of a shared library, which must correspond to
the load module’s name.

Provides an alternate filename for the soref . asm file generated with
—shared —asm.

Specify the resulting output PDS name when the —b or —bonly op-
tions are enabled. The name 555 should completely specify the PDS
name on the mainframe host. A member name can also optionally
be specified.

Normally, PLINK will issue diagnostic messages regarding dupli-
cate definitions of symbols and sections. The — option suppresses
these messages. In any case, these duplicate definitions are not ad-
dressed by PLINK and are simply passed on to the IBM linker.

Specify values for the to node name (INMTNODE) and to UID (INMTUID)
headers in TSO TRANSMIT files. The UID is optional. The default
is DIGNUS . PLINK. This option only has an effect when combined with
—b or —bonly.

The —u option causes PLINK to adjust the return code when unre-
solved references are discovered. Normally, after PLINK process-
ing; if there remain any unresolved references, the return code will
be 8. The —u option causes the return code to be 4 when unresolved
references are encountered. This can be helpful if there are unre-
solved references at the PLINK step, which will be later resolved
by the IBM BINDER.

The —uu option operates the same as the —u option except that the
return code will not altered by any unresolved references. PLINK
will continue to generate warnings regarding unresolved references,
but they will not set the return code to 4.

Causes PLINK to produce the banner indicating the version and
copyright information, then to exit with a return code of 0.

Causes PLINK to produce a load-module cross-reference listing
when the —b or —bonly option is enabled.

Systems/C Utilities 17

—xsd Generate output in extended object module format (XOBJ) with
symbols defined by XSD cards. This allows the representation of
long names, but does not support all of the features of GOFF. The
IBM binder has known bugs with XOBJ input, so PLINK will never
output XOBJ decks unless —xsd is specified. If an object comes in
as XOBJ, PLINK will automatically convert it to GOFF.

-z The -z option is used to change PLINK’s processing of DAR
archives and TSO TRANSMIT files. -z is followed by either allextract
or defaultextract. In the default mode of operation, PLINK only
extracts members which satisfy external references. If -zallextract
is specified, PLINK will extract all members of subsequent archives
found on the command line, essentially treating all the DAR archive
and TSO TRANSMIT members as primary input files. ~zdefaultextract
is used to return to the default extraction method.

PLINK control statements

PLINK recognizes the ARLIBRARY, IMPORT, INCLUDE INSERT, and RENAME control
statements in the input stream. When the —b or —bonly options are enabled, PLINK
will also recognize ENTRY NAME and ORDER cards used for describing load modules.

If b and —bonly are not specified, PLINK will copy all other control cards to the
resulting output file. All such unrecognized control statements will be gathered
together, and placed at the end of the PLINK-generated output.

ARLIBRARY name Adds name to the list of DAR archive libraries PLINK will
examine to resolve external reference.

ENTRY name When -b or —bonly is enabled, this defines the resulting load mod-
ule entry point. When the binding options are not enabled, this
is copied to the resulting output file.

An entry point specified on an ENTRY card overrides any entry
point specified on an END card in the intput object.

If multiply ENTRY cards appear in the input, the last one discov-
ered is used for specifying the entry point of the load module.

If no ENTRY card is specified, PLINK will use an entry point
specified on an END card, or if no END cards specify an entry point,
PLINK will use the first byte of the first control section.

IMPORT type dll-name import-name Used when pre-linking IBM DLL objects. The
IMPORT card defines a datum/function that can be found in an
IBM DLL. type specifies the type of reference, either DATA or
CODE. dll-name is the name of the DLL module that resolves the
reference. import-name is the name of the DLL symbol.

18 Systems/C Utilities

IMPORT cards are generated by PLINK when pre-linking IBM
DLL objects. These generated cards are then employed when the
symbols in the DLL are to be referenced.

INCLUDE name Causes PLINK to include the object file name in its processing.
On cross-platform hosts, PLINK handles INCLUDE cards of the
form:

INCLUDE NAME(MEMBER)

in a manner designed to make transition from the mainframe
easier.

PLINK will first look for DD entries (from any —DD options) that
specify the name NAME. If they are found, PLINK will expand
the template specified in the —DD to search for the MEMBER.
It will also search for corresponding members in any archive or
TSO TRANSMIT files that were provided with —DD.

If no —-DD option specifies the NAME, then PLINK will consider
NAME to be the name of an environment variable. This environ-
ment variable will be taken as a template value, just as if a -DD
option had specified it.

If the NAME is not specified in the environment and is not spec-
ified by a —DD option, PLINK will attempt to open the file
exactly as it appears on the INCLUDE card.

If an INCLUDE card does not specify a DD, such as
INCLUDE MEMBER

then PLINK will search the templates provided by —I instead of
a DD.

Note that on MVS and CMS hosts, PLINK simply uses the
standard OS-provided DDs and does not use the —DD options.

For example, on a Windows platform, if PLINK discovered the
input card:

INCLUDE MYPDS(MYOBJ)

and the option ~-DD=MYPDS=C: \DIR1\&M.obj;C:\DIR2\&M.obj;foo.xmi
was specified, PLINK would first try to open the file named
C:\DIR1\MYOBJ.obj. If that file was not available, PLINK would

then try to open the file named C:\DIR2\MYOBJ.obj. If that file

was not available, it would look for a matching member within
foo.xmi (a TSO TRANSMIT file).

This approach allows for a mapping of DD-style concatenations
to cross-platform systems; without changing the input to the pre-
linker.

For more information about how search templates are expanded,
see the section on AUTOCALL processing.

Systems/C Utilities 19

INSERT symbol

NAME name

ORDER name

Causes PLINK to add symbol as an external reference. If symbol
has not been resolved when the primary input has been processed,
AUTOCALL processing will attempt to resolve it. This card is
also passed to the PLINK generated output.

When —b or —bonly is enabled, this defines the name of the re-
sulting PDS member. When the binding options are not enabled,
this card is copied to the resulting output file.

When —b or —bonly is enabled, this card specifies that the named
CSECT should appear first in the output load module.

The effect of the ORDER card is that the given section is moved
to the top of the output list. A subsequent ORDER card will place
the section named there, before any others specified by ORDER.

The specification (P) can follow the name on the order card,
indicating the given section is to be aligned on a 4K boundary
(page aligned) in the output load module.

RENAME [ongname shortname Used to rename a symbol, providing a specific short-

name for a long-named symbol. longname is the original symbol
name; shortname is the resulting shortened name that will be
used in the output object module. If the optional SEARCH keyword
follows the shortname then the short name will be added to the
list of unresolved references for AUTOCALL processing.

The RENAME card is only valid when performing IBM pre-linking
functions. With normal Systems/C-style objects, the RENAME card
will be copied to the output file.

SETCODE AC (Cauthorizationcode) The SETCODE statement specifies the authorization

code for the generated load module.

The authorizationcode specifies an integer value between 0 and
255.

If the —b or —bonly options is specified (indicating “binding”), then
authorizationcode will be used as the authorization code for the
load module, otherwise the SETCODE command is copied to the
output for later processing.

PLINK autocall processing

PLINK will process INCLUDE cards and produce a list of external references. PLINK
examines each object that participates in a program and it will perform AUTOCALL
processing to resolve any external references discovered in the primary input files.

During AUTOCALL processing, PLINK examines the list of unresolved external
references, looking in the libraries specified with —=S or —-DD=SYSLIB for objects that
will resolve the references. When such an object is found, it is examined for further

20 Systems/C Utilities

references and for any re-entrant initialization sections. This process continues until
all references are resolved, or determined to be unresolvable.

PLINK can employ either a direct file name approach to resolving external ref-
erences, or take advantage of DAR archives, or use LOAD modules within TSO
TRANSMIT files, or any combination of these. DAR archives, TSO TRANSMIT
files, and —S specified templates are examined in the order they were discovered by
PLINK, first on the PLINK command line and then in any ARLIBRARY control
statements discovered in the input.

To search in locations specified by the —S option, PLINK simply expands the
various specified templates with the reference name, and attempts to open the given
file. If the open is successful, the file is processed, and the reference is considered
resolved. If the file doesn’t actually resolve the reference, PLINK will produce a
warning message.

On hosts which have case-sensitive files systems (UNIX, OS/390 and z/0OS), first an
exact match of the reference name is tried; then either the upper-case or lower-case
version is tried per the &M or &m characters in the template specification.

PLINK examines DAR archives by first looking for any DRANLIB generated
symbol table member. If the symbol table member is present, PLINK uses the
symbol table information to determine which member file resolves an external refer-
ence. Thus, PLINK is able to directly relate any file and its definitions. On hosts
that support it, PLINK locks DAR archives as they are discovered. This prevents
accidental changes to the DAR archive during PLINK processing. Because of this,
a DAR archive should not be specified more than once on the PLINK command
line.

When a symbol table member is not present, PLINK uses the member in the archive
with the same name as the unresolved symbol to attempt to resolve references, in a
fashion similar to examining a PDS for a particular member. Note, however, that the
file names in DAR . archives are case-specific and thus PLINK uses a case-specific
comparison in this case.

When searching a TSO TRANSMIT file, PLINK searches for a member with the
uppercased 8-character version of the symbol name, as though it was searching a
PDS without a table-of-contents file.

On 0S/390 and z/OS, PLINK has two approaches to searching for PDS members
which resolve a reference. If the DPDSLIB utility has created a table-of-contents
file in the PDS, PLINK will use that file to determine which member resolves
a reference. The table-of-contents file contains information regarding all of the
symbols in each object file in the PDS. Thus, PLINK can use the table-of-contents
to determine if an object resolves long names which cannot be represented in the
PDS directory. If the table-of-contents file is not present in the PDS, PLINK will
try and open the file name which is the same as the reference. See the section on
DPDSLIB for more information regarding the table-of-contents member.

Systems/C Utilities 21

Running PLINK

On cross-hosted platforms (Windows and UNIX), PLINK is typically executed
with the object files listed on the command line; and a —S option or library names
to locate any required library objects.

For example, on a Windows platform the command:

plink -SC:\sysc\lib\objs_rent\&M prog.obj

will read the initial input file, prog.obj and examine the C:\sysc\lib\objs_rent
directory for any AUTOCALL references. Because no —o option was specified, the
resulting object file is written to the file p.out.

This command, on UNIX platforms:

plink tl.obj t2.obj libone.a -L../mylibs -1ltwo

will read the two primary input objects t1.obj and t2.obj. It will try and resolve
references from the DAR archive libone.a and then the second DAR archive
../mylibs/libtwo.a.

On 0S/390 and z/0S, when run from TSO or “batch” JCL, PLINK operates
similar to the IBM pre-linker. The resulting gathered object is written to the file
//DDN:SYSMOD unless otherwise specified. PLINK has a default library template
of -S//DDN:SYSLIB(&M) which causes it to look in the SYSLIB PDS for autocall
references, other input objects, —S library templates or DAR . archives may be added
in the PARMS option on the PLINK step. PLINK reads the file //DDN:SYSIN
as the initial input file. Typically, this file contains INCLUDE cards to include the
primary objects for the program. Other primary input files may be included in the
PARMS for PLINK.

For example, the following JCL reads the object INDD (PROG) and uses DIGNUS.LIBCR
as the autocall library:

//PLINK EXEC PGM=PLINK
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSQUT=A
//STDOUT DD SYSOUT=A
//SYSLIB DD DSN=DIGNUS.LIBCR,DISP=SHR
//INDD DD DSN=mypds,DISP=SHR
//SYSIN DD *
INCLUDE INDD(PROG)
//SYSMOD DD DSN=myoutput.obj, DISP=NEW

22 Systems/C Utilities

Note that the STDERR and STDOUT DDs were specified for PLINK’s message output.
Also, the ARLIBRARY control card could have been used to add additional DAR
archive files for resolving external references.

When executed under the OpenEdition shell, PLINK operates as it does on any
other UNIX platform.

Using PLINK to pre-link OpenEdition programs

Systems/C programs can be linked into the Hierarchical File System (HFS), pro-
ducing a program that can be executed just as any other OpenEdition program.

To create an HFS load-module, the output from PLINK can be linked using the
OpenEdition cc command. The -e // option should be added the cc command to
indicate that the entry-point is not the default Language Environment entry point
expected by cc. The Systems/C runtime library will specify its own entry-point.

For example, to pre-link and link the object “myfunc.o” and produce the HFS load-

module “myprog” under the OpenEdition shell (assuming /usr/local/dignus is
the installation location), simply run PLINK:

plink -omyprog.o myfunc.o "-S/usr/local/dignus/objs_rent/&m"

then use the OpenEdition cc command:

cc -e // -omyprog myprog.o

to produce the myprog load-module. myprog can then be invoked as any other
OpenEdition program.

For more information about creationg OpenEdition programs with Systems/C, see
the Systems/C C' Library manual.

Using PLINK to pre-link IBM C objects

As well as pre-linking Systems/C and Systems/C++ modules, PLINK can perform
the function of the IBM pre-linker, EDCPRLK, for IBM C/C++ object modules.

PLINK automatically recognizes when the input contains IBM C/C++ object
modules, and switches to “IBM pre-linking mode.” It will then perform the same
functions that the IBM pre-linker performs, using the same name-mapping algo-
rithms, DLL processing and C++4-specific processing.

Systems/C Utilities 23

If none of the primary input files, or any file they INCLUDE, is an IBM object, then
the —fc370 option must be manually specified if the IBM pre-linker processing is
desired.

When pre-linking IBM objects, PLINK will properly process the IBM IMPORT and
RENAME input cards. The —fdllname and —fsysdefsd options specify the resulting DLL
name and name of the DLL definition file for any DLL exports that are encountered
in the input objects.

When in IBM pre-linking mode, the PLINK-generated listing will appear similar to
the IBM pre-linker listing.

When converting from a mainframe environment to a cross environment; any PDS
libraries used for pre-linking should be converted to DAR archives on the cross-
platform host. Care should be taken to ensure that AUTOCALL processing is
consistent between the mainframe and cross-platform environments. If the PDS
libraries have been processed by the IBM Object Librarian, then the equivalent
DAR archive on the cross-platform host should be processed by the DRANLIB
utility. When a PDS is processed by the IBM Object Librarian, a member named
@@DC370%$ will be present. If that member is present, then the cross-platform DAR
archive should be processed with the DRANLIB utility to ensure that proper
“extended-name” AUTOCALLing will result. If the @DC370$ member is not in the
PDS library, then DRANLIB should not be applied to the DAR archive, so that
AUTOCALLing will use the member names.

If the resulting DAR archive is not processed by DRANLIB, then care should
be taken to ensure that all of the names available in the PDS are also available in
the DAR archive. This might include copying any PDS ALIASed members in the
DAR archive so that all member names will be present. bf DAR archives have no
“alias” facility, so a separate copy will be required.

During pre-linking, PLINK follows the autocall method of the IBM pre-linker
EDCPRLK. That is, if the unresolved name is a “long name”, autocall processing is
not performed unless the specified search location is a DAR archive that has been
processed with DRANLIB, or a PDS that has been processed with DPDSLIB.
IBM’s definition of a “long name” is one that is longer than 8 characters or has any
lower-case letters.

If the —b or —bonly option is specified, indicating that the pre-linked object deck
should then be “bound”, any subsequent autocall processing that may occur follows
the normal PLINK rules and not the rules used by EDCPRLK.

Using PLINK to directly create load modules

PLINK can, on cross-platform hosts, optionally perform the final linking, or binding
step and produce a load module. The load module will reside in a PLINK-created
TSO TRANSMIT file suitable for receiving the resulting load-module with the TSO
RECEIVE command.

24 Systems/C Utilities

When the —b or —bonly options are specified, PLINK will internally perform the
final linking steps, or binding, and internally build the resulting load module. The
-b option causes PLINK to perform its normal pre-linking steps, following by the
binding step to create the load module. The —bonly option causes PLINK to only
perform the binding process, skipping the normal PLINK pre-linking processing.

When binding is performed, the PLINK listing output will contain a load module
map and symbol cross reference sections that are similar to those produced by the
IBM linker.

After internally binding the load module, PLINK will create a TSO TRANSMIT
file, which describes the resulting load module as if it resided on a 3390 direct access
storage device. If the specified output file already exists and is a TSO TRANSMIT
file, PLINK will update it, preserving any other members already present.

The resulting TSO TRANSMIT file should then be copied to a fixed-block data set,
with a logical record length of 80 bytes. Then, the RECEIVE command can be
employed to realize the load module on an MVS, OS/390 or z/OS system.

The —syslmod option defines the name of the PDS on the mainframe platform.
—syslmod can specify a PDS name and a member name. If a member name is not
specified, PLINK will use a name specified on a NAME card in the input, or the
name TEMPNAMO.

The -blksize option can be used to define the block size of the resulting PDS file.
If no —blksize option is specified, PLINK uses a value of 27998, the optimum block
size for a 3390 device.

For example, the following PLINK command will pre-link obj1.o0bj, obj2.0obj and
obj3.obj, producing the output TSO transmit file prog.xmi. The final location
for the resulting load module will be in the PDS named “MY.PROGS.LOAD” in the
member named “PROG”.

plink -o prog.xmi -b -syslmod="MY.PROGS.LOAD(PROG)" objl.obj
0bj2.0bj obj3.ob]

The prog.xmi file can then be copied to an FB-80 data set, and the RECEIVE
command will produce the MY.PROGS.LOAD (PROG) load-module.

For more information about using the RECEIVE command, see the IBM publication
TSO/E Command Reference.

Using PLINK to link programs on OS/390

Before execution, programs must be prepared, optionally using the Systems/C pre-
linker, PLINK, then the IBM BINDER.

Systems/C Utilities 25

Systems,/C provides two versions of the Systems/C C libraries, one for RENT pro-
grams and one for non-RENT programs. If you are using the Systems/C library,
it is important to link with the appropriate version. If any source programs refer-
ence variables found in the Systems/C library (e.g. errno) and that program was
compiled with the —frent option, then the re-entrant version of the Systems/C li-
brary should be used. Using the incorrect version of the library will cause strange
run-time errors. The installation instructions for your particular host platform will
detail where to find the correct Systems/C library. Normally the Systems/C library
is specified as the last library to use for AUTOCALL resolution in the PLINK
step. Furthermore, PLINK must be used for re-entrant programs that use the Sys-
tems/C library or to take advantage of DAR archive libraries for external reference
resolution.

In the following example JCL, there are three objects to link together to form the
resulting executable, MAIN, SUB1, and SUB2, representing a main module and two
supporting sub-modules. These are found in the PDS MY.PDS.0BJ. The resulting
executable is written to MY.PDS.LOAD (MPROG).

//LINK JOB

//PLINK EXEC PGM=PLINK,REGION=2048K

//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//SYSLIB DD DSN=DIGNUS.LIBCR,DISP=SHR
//SYSMOD DD DSN=&&PLKDD,UNIT=VIO,DISP=(NEW,PASS),
// SPACE=(32000, (30,30)),

// DCB=(RECFM=FB, LRECL=80,BLKSIZE=3200)
//INDD DD DSN=MYPDS.0OB.J,DISP=SHR

//SYSIN DD

INCLUDE INDD(MAIN)

INCLUDE INDD(SUB1)

INCLUDE INDD(SUB2)
//STDIN DD
//LINK EXEC PGM=IEWL,REGION=2M,PARM=(’LIST’,
// ’MAP,XREF,LET’,
// ?ALIASES=NO,UPCASE=NO,MSGLEVEL=4,EDIT=YES’)
//SYSPRINT DD SYSQUT=x
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL, (1,1))
//SYSUT2 DD UNIT=SYSDA,SPACE=(CYL, (1,1))

First PLINK is invoked, specifying the inclusion of the three object modules and
the Systems/C C reentrant library. This step could have been performed on a cross-
platform host, running PLINK there. Then the IBM BINDER is invoked for final
linking and generation of the resulting load module.

26 Systems/C Utilities

Systems/C shared libraries

The Systems/C runtime supports UNIX-style shared libraries, allowing programs
to be divided into logical load-modules which are dynamically loaded at runtime.
Each such load module is called a “shared library.” Code that uses a shared library
or is in a shared library is compiled with the —fpic option to DCC or DCXX.

Shared library files

A “shared library” consists of two items, the SO object and the shared library
module.

The shared library module is a self contained load module, linked on the host to
produce a loadable module. It contains all of the definitions of code and data that
make up the shared library.

The SO object is an object deck which is linked into the program that uses the
shared library module. It contains the function stubs and “&var” initializers for
all the defined items in a shared library. The SO object also contains a new card,
the .80 card. This card communicates to PLINK the runtime name of the shared
library module.

When pre-linking, should PLINK discover a .80 card, it adds the named module
to the list of modules. PLINK then appends an @@SO0LST# CSECT to the generated
output. The @@SOLST# contains the names of all of the shared modules which will
be needed at runtime for this executable.

Data references

The compiler generates references to locally-defined data (and static data) as normal.

For undefined (extern) reentrant data, the compiler generates a special Q-con with
an “&” prefix, such as “&var”. The corresponding location within the PRV will be
filled in with the address of the variable, rather than with the variable itself. This
extra level of indirection allows a PRV within one library to contain a reference to
a symbol defined in another library that has its own PRV.

Data definitions

Defined data is generated as normal.

For externally-visible defined data, an extra definition is created for the “&var” Q-
con, with a special reentrant initializer script to indicate that it should be initialized
with the address of the dynamic variable “var”.

Systems/C Utilities 27

Thus, only one initializer will be executed per module, saving runtime startup cost.
Furthermore, references to extern RENT data only suffer one additional instruction
when computing their address (note that the compiler can “cache” this address and
doesn’t need to frequently recompute it in the same basic block).

Functions

Remote function pointers are used that point to a two-word unit containing both
the PRV and the address of the start of the function’s code.

For calls directly to a named function, the compiler generates the call as normal.
If the reference is satisfied by an SO object, then the function refers to a PLINK-
generated stub routine. This stub is responsible for determining the runtime address
of the function along with the shared-library’s allocated PRV (there are runtime
initializers for these functions). The stub then saves the current PRV, sets the new
one, branches to the function, restores the PRV and returns to the caller. Essentially,
the stub-function converts a local function call into a remote one.

A significant advantage of this approach is that calls to functions within the same
module suffer no added cost. Only calling outside the module results in any dynamic
linkage overhead.

Also note that remote function pointers can be successfully passed across shared-
library modules.

Runtime support

On startup, the runtime loads any shared library modules specified in the @ASOLST#
CSECT (if present). It creates a dictionary of the symbols provided by each library
that it loads. If a library is loaded that has dependencies on another library, the
other library is loaded to satisfy the dependency.

Then it allocates the PRVs for all of the loaded libraries, and executes the reentrant
initialization scripts for them. The reentrant initialization scripts contain two new
entries, one which resolves to the PRV for a named library and another which
resolves to the address of a shared symbol. They are resolved using the shared
library dictionaries.

Shared libraries may also be loaded using dlopen(). See the Systems/C C Library
manual for more information.

Building a shared library

Each shared library has a name, provided by the PLINK option -soname=name.
It should correspond with the name of the shared library load module, as it will be
used to find that load module.

28 Systems/C Utilities

To build the shared library module and its associated SO object, a two-step process
is used.

Step #1

First, PLINK must be executed with the —shared and —asm options, and with all
of the objects within the shared library specified on the command line. This will
cause the files soref .asm and sodef .asm to be generated. Alternative filenames for
these two can be specified with the —soref=soref.asm and —sodef=sodef.asm options.

sodef .asm contains stubs for all of the symbols defined within this shared library
and exported for use by other load modules. After it is assembled with DASM, it
will provide the SO object.

If you do not use —exclude_allrefs, then sodef .asm also includes external references
for any undefined symbols within the shared library, in hopes of later AUTOCALL
resolution. That is the historical behavior, but if the AUTOCALL is not successful
then it will make it harder to track down the source of these undefined symbol
references. So it is now recommended to use —exclude_allrefs any time you use
—shared —asm.

soref .asm contains stubs for the undefined symbols within this shared library (i.e.,
references to symbols outside of this library). It must be assembled with DASM
and the resulting object deck should be passed as an argument to PLINK for the
next step.

Both soref.asm and sodef.asm use a macro called DCCLSTUB, which provides the
code for a stub routine. It needs to manage setting and resetting the PRV across
shared library function calls. DCCLSTUB may be replaced with user-supplied code.

Step #2

Then PLINK is run again, this time with just —shared, and the list of all of the
objects in the shared library, including the one produced from soref.asm. The
resulting object is the shared library module. It must be turned into a load module
by either final linking on the mainframe or using the —b option to PLINK.

Systems/C Utilities 29

Example

In the following example, we compile the file a.c and assemble it to produce a.obj,
then we build the shared-library A.

Compiling;:

dcc -fpic -o a.asm a.c
dasm -Lmaclib -macext . -oa.obj a.asm

Pre-linking, step #1:

plink -shared -asm -soname A -sodef=adef.asm -soref=aref.asm a.obj
dasm -Lmaclib -macext . -oaref.obj aref.asm
dasm -Lmaclib -macext . -oadef.obj adef.asm

At this point adef.obj is the SO object for shared library A, and should be linked
in with any program that uses shared library A.

Pre-linking, step #2 (build the shared library module):

plink -oaload.obj -shared -soname A a.obj aref.obj

At this point, aload.obj is the pre-linked object deck that should be linked into
the load module A on the host platform. Since aref.obj has now been used, it is
safe to delete aref.asm and aref.obj.

To continue with this example, let’s compile myprog. c which uses the shared library
A.

First compile and assemble myprog.c (note that we specify the —fpic option):

dcc -omyprog.asm -frent -fpic myprog.c
dasm -Lmaclib -macext . -omyprog.obj myprog.asm

Now simply pre-link myprog.obj with the the SO object file for A (adef.obj), along
with the Systems/C library, creating myload.obj:

plink -omyload.obj myprog.obj adef.obj "-Sobjs_rent/&m"

myload.obj can be linked on the host platform. At runtime, the program will
attempt to load the shared-library-module named A, because that was the name
specified in the —soname option on the PLINK steps.

30 Systems,/C Utilities

DPDSLIB

Using DPDSLIB

DPDSLIB is a utility provided on OS/390 and z/OS which allows autocall resolu-
tion of PDS members to account for long symbol names within the object members.
Typically, when resolving names based on PDS members, PLINK attempts to re-
solve the reference by opening the PDS member with the same filename as the
reference. This limits the length of external symbols to 8 characters. Also, PLINK
converts the reference name to upper-case letters to find the PDS member, which
may cause conflicts.

DPDSLIB will examine all of the objects in a PDS, creating a table-of-contents
PDS member that describes each member in the PDS and the symbols it defines. It
will then add this table-of-contents file to the PDS for PLINK to use later. Files
in the PDS which are not GOFF, XSD or ESD format will be ignored. The name
of the dictionary file in the PDS is ##SYMDEF. In this regard, DPDSLIB performs
a similar function to a PDS library as DRANLIB performs to a DAR archive.

Note that if members are added to, or changed in the PDS, the DPDSLIB program
should be executed again to update the table-of-contents file.

Running DPDSLIB

DPDSLIB can be found in the Systems/C executable load module PDS for your in-
stallation, along with the other Systems/C programs. DPDSLIB may be executed
either in TSO or with JCL as a batch program.

DPDSLIB has only one option, the name of the PDS to examine.
DPDSLIB examples

For example, if the PDS object library is named USER.MY.LIB, the following com-
mand under TSO would examine each of the members in USER.MY.LIB and create
the ##SYMDEF table-of-contents file.

Systems/C Utilities 31

DPDSLIB //DSN:USER.MY.LIB

Note that the specification of the PDS uses the Systems/C file naming conventions.

The following example demonstrates how to use DPDSLIB in a batch environment.
In this example, the name of the PDS library to examine is given as the PARM value
on the DPDSLIB EXEC statement.

//*

//* Execute DPDSLIB to add the table-of-contents
//* file to the PDS named in

//* the DD LIBRARY.

//*
//DPDSLIB EXEC PGM=DPDSLIB,
// PARM="LIBRARY’

//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDOUT DD SYSOUT=x*

//STDERR DD SYSQUT=x*

//LIBRARY DD DSN=PDS library name,DISP=SHR

DPDSLIB also supports multiple DSNs concatenated into a single DD definition.
In this case, DPDSLIB will treat each DSN as its own library, as if DPDSLIB
were executed on each DSN. For example, in the following JCL, the PDSs MY.PDS1,
MY.PDS2 and MY.PDS3 will each be examined in turn, and a ##SYMDEF table-of-
contents member will be added to each.

//*

//* Execute DPDSLIB to add the table-of-contents
//* file to the PDS named in

//* the DD LIBRARY. In this example the DD

//* refers to several DSNs

//*
//DPDSLIB EXEC PGM=DPDSLIB,
// PARM="LIBRARY’

//STEPLIB DD DSN=Systems/C' load library,DISP=SHR
//STDOUT DD SYSOUT=*

//STDERR DD SYSOUT=*

//LIBRARY DD DSN=MY.PDS1,DISP=SHR

// DD DSN=MY.PDS2,DISP=SHR

// DD DSN=MY.PDS3,DISP=SHR

32 Systems,/C Utilities

DAR

Using DAR

The Systems/C archive utility, DAR, creates and maintains groups of files combined
into an archive. Once an archive has been created, new files can be added and
existing files can be extracted, deleted or replaced.

Files are named in the archive by a single component, i.e., if a file referenced by a
path containing a slash (/) is archived on a UNIX platform, it will be named by
the last component of that path. When matching paths listed on the command line
against file names stored in the archive, only the last component of the path will be
compared.

All informational and error messages use the path listed on the command line, if
any was specified; otherwise the name in the archive is used. If multiple files in the
archive have the same name, and paths are listed on the command line to “select”
archive files for operation, only the first file with a matching name will be selected.

The normal use of DAR is for creation and maintenance of libraries suitable for
use with the Systems/C pre-linker, PLINK, although it is not restricted to this
purpose.

Running DAR

On UNIX and Windows cross-platform hosts, the DAR. utility is located in the
Systems/C installation directory, as dar on UNIX, or DAR.EXE for Windows. On
0S/390, DAR is found in the Systems/C installation PDS, as the DAR member.

The DAR utility exits with a zero (0) return code on success, and greater-than zero
(0) if an error occurs.

During processing, DAR requires several temporary files. On UNIX hosts, these will
reside in /tmp/dar.XXXXX. On Windows hosts, these will be named DAR##### . TMP
and will be located in the current directory. On OS/390, the files SYSUT1-SYSUT5
may be employed (depending on the operation requested) and must be properly
allocated.

Systems/C Utilities 33

The DAR utility accepts the following possible command lines formats:

DAR -d [-Tv] archive file ...

DAR -m [-Tv] archive file ...

DAR -m [-abiTv] position archive file ...
DAR -p [-Tv] archive [file ...]

DAR -q [-cTv] archive file ...

DAR -r [-cuTv] archive file ...

DAR -r [-abciuTv] position archive file ...
DAR -t [-Tv] archive [file ...]

DAR -x [-ouTv] archive [file ...]

The archive file name is provided after any options (possibly preceded by a position
option, which names a member in the archive.) Following the archive file name is a
list of member names, or files within the archive.

Also on Windows and OS/390 host platforms, DAR accepts a —@filename option.
This option can be used to specify a command line larger than the host operat-
ing system supports. The contents of filename are examined and inserted in the
command line argument list where the option appears.

DAR options

DAR options:

A positioning modifier used with the options —r and —m. The files are en-
tered or moved after the archive member position, which must be specified.

A positioning modifier used with the options —r and —m. The files are
entered or moved before the archive member position, which must be spec-
ified.

Whenever an archive is created, an informational message to that effect is
written to standard error. If the —c option is specified, DAR creates the
archive silently.

Delete the specified archive files.
Identical to the —b option.

Move the specified archive files within the archive. If one of the options
—a, —b or —i is specified, the files are move before or after the position file
in the archive. If none of these options are specified, the files are moved to
the end of the archive.

34 Systems/C Utilities

P

Set the access and modification times of extracted files to the modification
time of the file when it was entered into the archive. This will fail if the
user does not have sufficient authority for the operation, or the host file
system does not support it.

Write the contents of the specified files to the standard output. If no files
are specified, the contents of all the files in the archive are written in the
order they appear in the archive.

(Quickly) append the specified tiles to the archive. If the archive does not
exist a new archive file is created. This option can be must faster than the
—r option, when creating a large archive piece-by-piece, as no checking is
done to see if the files already exist in the archive.

Replace or add the specified files to the archive. If the archive does not
exist a new archive file is created. Files that replace existing files do not
change the order of the files within the archive. New files are appended to
the archive unless one of the options —a —b or —i is specified.

Select and/or name archive members using only the first fifteen characters
of the archive member or command line file name. The historic archive
format had sixteen bytes for the name, but some historic archiver and
loader implementations were unable to handle names that used the entire
space. This means that file names that are not unique in their first fifteen
characters can subsequently be confused. A warning message is printed to
the standard error output if any file names are truncated.

List the specified files in the order in which they appear in the archive,
each on a separate line. If no files are specified, all files in the archive are
listed.

Update files. When used with the —r option, files in the archive will be
replaced only if the disk file has a newer modification time than the file
in the archive. When used with the —x option, files in the archive will be
extracted only if the archive file has a newer modification time than the file
on the disk. On those hosts file systems that don’t support a modification
time in the file system (i.e. OS/390 PDS members) this option produces
an error message on the standard error output.

Provide verbose output. When used with the —d, —m, —q or —z options,
DAR gives a file-by-file description of the archive members. This descrip-
tion consists of three, white-space separated fields: the option latter, a
dash (’-’) and a file name. When used with the —r option, DAR displays
the description as above but the initial letter is an “a” if the file is added
to the archive and an “r” if the file replaces a file already in the archive.

When used with the —p option, the name of each printed file, enclosed in
less-than (<) and greater-than (>) characters, is written to the standard
output before the contents of the file; it is preceded by a single newline
character, and followed by two newline characters.

Systems/C Utilities 35

When used with the —¢ option, DAR displays listing of information about
the members of the archive. This listing is similar to the UNIX “ls -1”
command, and consists of eight, white-space separated fields: the file per-
missions, the decimal user and group identifier numbers separated by a
single slash (/), the file size (in bytes), the file modification time (in the
date format "%b %e %H:%M %Y"), and the name of the file.

Extract the specified archive members into the files named by the command
line arguments. If no members are specified, all the members of the archive
are extracted into the current directory.

If the file does not exist, and the host file system supports it, it is created;
if it does exist, the owner and group will be unchanged. The file access and
modification times are the time of the extraction (but see the —o option for
alternatives.) The file permissions will be set to those of the file when it
was entered into the archive; this will fail if the user does not have sufficient
authority for the operation, or the host file system does not support it.

36 Systems,/C Utilities

DAR examples

The following JCL is an example of how to use DRANLIB on OS/390 or z/0S.
Note the definition of the temporary file SYSUTO. This example creates the archive
referenced in the ARCHIVE DD statement, using the three members MEM1, MEM2 and
MEM3 from the 0BJS DD.

//*
//* Execute DAR to create the archive named in
//* the DD ARCHIVE.

//*
//DAR EXEC PGM=DAR,REGION=2049K,
// PARM=’-QPARMS’

//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//PARMS DD *
-rv,ARCHIVE,0BJS(MEM1) ,0BJS (MEM2) ,0BJS (MEM3)
//STDOUT DD SYSOUT=x

//STDERR DD SYSQUT=x*

//SYSUTO DD UNIT=SYSDA,SPACE=(CYL,(5,1)),

// BLKSIZE=80,LRECL=1,RECFM=FB
//ARCHIVE DD DSN=archive name,

// DISP=(NEW,CATLG,DELETE),

// SPACE=(CYL, (10,2) ,RLSE),

// BLKSIZE=80,LRECL=1,RECFM=FB

//0BJS DD DSN= objs PDS,DISP=SHR

On UNIX or Widows platforms, the DAR program is invoked in a manner similar to
the typical UNIX ar program. This example creates the archive named libstuff.a,
from the three objects in the objs directory on a UNIX platform:

dar rv libstuff.a objs/meml objs/mem2 objs/mem3

Systems/C Utilities 37

38 Systems,/C Utilities

DRANLIB

Using DRANLIB

The DRANLIB utility is used to create a table-of-contents member for DAR
archive libraries. The PLINK pre-linker uses this table-of-contents member to
resolve external references. This table is named “__.SYMDEF” and is prepended to
the archive. Files in the archive which are not GOFF, OBJ or XOBJ format object
decks and symbols which are uninteresting to PLINK are ignored.

Running DRANLIB

On UNIX platforms, the DRANLIB utility is found in the Systems/C installation
directory as the file dranlib. On Windows hosts, it is named DRANLIB.EXE. On
0S/390 and z/0S, the DRANLIB utility is found in the Systems/C load module
PDS as the DRANLIB member.

DRANLIB has the following command line:
DRANLIB [-t] file ...

where any number of DAR. archive files may be specified.

DRANLIB requires temporary files to perform this operation. On UNIX plat-
forms, these are found in /tmp/dranlib.XXXXX. On Windows platforms, the files
DRL##### . TMP in the current directory will be used. On OS/390, the files SYSUT1-
SYSUT3 will be used and should be appropriately allocated.

DRANLIB returns with a return code of 0 on success, any non-zero return code
indicates errors.

Systems/C Utilities 39

DRANLIB options

—t Set the modification time of the generated __. SYMDEF member in the archive.
Some linkers (but not the Systems/C pre-linker PLINK) compare this
time with the modification time of the archive to verify that the table is
up-to-date with respect to the archive. If the modification time has been
changed without any change to the archive (for example, by copying the
archive), this option can be used to “touch” the modification time so that
it appears the table is up-to-date. This is also useful on UNIX hosts af-
ter using the —t option of the make command. Note that this option is
ineffective when running DRANLIB on 0S/390 and z/0S.

DRANLIB examples

Some typical JCL for using DRANLIB on OS/390 might be:

//*

//* Execute DRANLIB to add the definition
//* symbol table to the archive named in
//* the DD ARCHIVE.

//*
//DRANLIB EXEC PGM=DRANLIB,REGION=2049K,
// PARM=’ARCHIVE’

//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDOUT DD SYSQUT=x*

//STDERR DD SYSOUT=x

//SYSUTO DD UNIT=SYSDA,SPACE=(CYL, (5,1)),

// BLKSIZE=80,LRECL=1,RECFM=FB
//SYSUT1 DD UNIT=SYSDA,SPACE=(CYL,(5,1)),
// BLKSIZE=80,LRECL=1,RECFM=FB

//ARCHIVE DD DSN=archive name,DISP=(MOD)

On UNIX and Windows, the typical command for using DRANLIB is:

dranlib archive file name

For example, to add a symbol definition file to the archive myarchive.a, the command
would be:

dranlib myarchive.a

40 Systems/C Utilities

GOFF2XSD

Using GOFF2XSD

GOFF2XSD is a program supplied with Systems/C which converts GOFF format
object code to XSD format object code. The IBM HLASM generates GOFF format
object code when the XOBJECT option is enabled. GOFF format, as well as XSD
format, allows for identifiers which are longer than the 8-character limit imposed
by the older ESD format. The Systems/C pre-linker PLINK can directly process
either GOFF or XSD object format files, converting them to ESD format which may
be required by some older linkers.

Because PLINK can accept GOFF input directly, this utility is now no longer
required for PLINK and should be considered deprecated.

Typically, GOFF2XSD is used on an OS/390 or z/OS host, as part of the assembly
step, but it is available and can be used on any Systems/C supported platform.

Systems/C Utilities 41

Running GOFF2XSD

GOFF2XSD accepts a —o filename option followed by the name of the input file as
parameters. The —o filename option specifies where the output should be written.
On 0S/390 and z/0S, if —o filename is not specified, the output is written to the
SYSOUT DD. Also, on OS/390, the output data set should be a fixed block file with
80 byte records (RECFM=FB,LRECL=80.)

On 0S/390 and z/OS, if no input file is specified, GOFF2XSD reads from the
SYSIN DD.

For example, if the HLASM step was named ASM, the GOFF2XSD SYSIN DD could
refer back to the output of HLASM, and generate a SYSOUT object module suitable
for inclusion by PLINK with the following JCL:

//*

//* Execute GOFF2XSD which translates the

//* HLASM-produced GOFF object into an

//* XSD-format object.

//*

//GOFF2XSD EXEC PGM=GOFF2XSD,REGION=2049K
//STEPLIB DD DSN=Systems/C' load library,DISP=SHR
//STDOUT DD SYSQUT=*

//STDIN DD SYSOUT=*

//SYSIN DD DSN=*.ASM.SYSLIN,DISP=(0LD,DELETE)
//SYSOUT DD DSN=&&0BJ,UNIT=VI0,DISP=(NEW,PASS),
// SPACE=(32000, (30,30)),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)

Note that the STDIN and STDOUT DDs are defined as well, GOFF2XSD writes any
informative or error messages to those data sets.

On a cross-platform host, the following will translate the file named goffin, creating

the XSD object file xsdout:

goff2xsd -o xsdout goffin

42 Systems/C Utilities

DCCPC

Using DCCPC

The Dignus CICS Command Processor, DCCPC, is used to translate C source code
which uses EXEC CICS commands into normal C code prior to invoking DCC. This is
especially useful in cross environments where IBM’s translators cannot be used. For
further information about CICS, see the IBM publication CICS Transaction Server
for z/0S: CICS Application Programming Reference document number SC34-5994-
02.

DCCPC implements all of commands from CICS/ESA V4R1, and many of the
newer CICS TS commands as well.

Running DCCPC

On Windows and Unix, DCCPC is executed with a command line of the form

dccpe [options] [input file]

If no input file is specified, input is read from stdin.

When run on OS/390 and z/OS, options may be specified in the PARM statement. If
no input file is specified, the SYSIN DD is used. Output defaults to SYSPUNCH, which
would typically be used as input for DCC in the next step. Informational and error
messages are output to STDOUT and STDERR DDs. The following JCL could be used
on OS/390:

//DCCPC JOB
//DCCPC EXEC PGM=DCCPC,PARM=" options’
//STEPLIB DD DSN=Systems/C' load library,DISP=SHR
//STDERR DD SYSQUT=x
//STDOUT DD SYSOUT=x
//SYSPUNCH DD SYSQUT=x
//SYSIN DD *
<C source>

Systems/C Utilities 43

DCCPC Options

Options for DCCPC are summarized in the table below.

-A process assembly source
-C process C source
—o file place translated output in the file named file

~fdli / ~fnodli

enable/disable support for EXEC DLI

~fgds / —fnogds

enable/disable support for GDS commands

—fsp / —fnosp enable/disable support for System Programmer com-
mands

—fcols=n the output in C mode will be n columns

—fseq the output in C mode will include sequence numbers

—fmrec / —fnomrc

enable/disable use of mainframe-style return code

—fflag=code

output only error messages of a certain priority

—fepilog / —fnoepilog

enable/disable use of DFHEIRET macro

—fprolog / —fnoprolog

enable/disable use of DFHEISTG, DFHEIEND, and
DFHEIENT macros

—ferrlist / —fnoerrlist

enable/disable listing errors on stderr

—fecpp / —fnocpp

enable/disable C++ mode

—fexci / —fnoexci

enable/disable EXCI mode

—fleasm / —fnoleasm

enable/disable LE ASM compatibility

—fvse / —fnovse

enable/disable VSE compatibility

~fedf / ~fnoedf

enable/disable EDF mode

-V

print version information

The —A option (process

assembly source)

The —A option tells DCCPC to process assembly source code.

The —C option (process C source)

The —C option tells DCCPC to process C source code instead of assembly code.
—(C'is the default for DCCPC.

44 Systems/C Utilities

The —o file option (specify the name of the output file)

The —o file option specifies that the translated output should go to a file other than
the default. On Windows and Unix systems, the default is ccp.out, while in OS/390
it is the SYSPUNCH DD.

The —fdli and —fnodli options (enable/disable EXEC DLI)

The —fdli option enables support for EXEC DLI statements as well as EXEC CICS
statements.

The —fgds and —fnogds options (enable/disable GDS commands)

The —fgds option enables support for GDS commands (commands of the form EXEC
CICS GDS ...). The default is —fnogds.

The —fsp and —fnosp options (enable/disable System Programmer com-
mands)

The —fsp option enables support for System Programmer commands. The default
is —fnosp.

The —fcols=n option (specify column width)

When processing C source code the —fcols=n option instructs DCCPC to use only
n columns in its output. Assembly code is always limited to 72 columns with
continuations.

The —fseq option (generate sequence numbers)

When processing C source code the —fseq option causes DCCPC to generate se-
quence numbers in the output. This implicitly sets ~-fcols=72. The sequence num-
bers appear in columns 73-80.

The —fmrc and —fnomrc options (enable/disable mainframe-style return
codes)

The —fmrc option specifies that the translator should use mainframe-style return
codes to indicate the exact error level reached. The —fnomrc option specifies that

Systems/C Utilities 45

the translator should use Unix-style return codes that are either 0 (success) or 1
(errors). On OS/390 —fmrc is the default, while on cross-platform hosts —fnomrc is
the default.

The —fHlag=code option (output only error messages of a certain priority)

The —fflag=code option specifies that only error messages at least as severe than
code should be displayed. Valid values for code are I for informational messages, W
for warnings, E for errors, and S for severe errors. The default is —fflag=1.

The —fepilog and —fnoepilog options (enable/disable use of DFHEIRET macro)

The —fnoepilog option specifies that the DFHEIRET macro should not be invoked in
the translated assembly source, This option is needed to make the CICS RETURN
command effective. The default is —fepilog.

The —fprolog and —fnoprolog options (enable/disable use of DFHEISTG,
DFHEIEND and DFHEIENT macros)

The —fnoprolog option specifies that the DFHEISTG, DFHEIEND and DFHEIENT macros
should not be invoked in the translated assembly source. These macros define local
storage that is allocated a program start up. The default is —fprolog.

The —ferrlist and —fnoerrlist options (enable/disable listing of errors on
stderr)

The —ferrlist option enables the listing of errors on stderr. The —fnoerrlist option
specifies that errors should just be listed as comments in the translated output file
and is the default.

The —fcpp and —fnocpp options (enable/disable C++ mode)

The —fepp option can be used with the —C option to use C++ instead of C for input
and output. —fepp has no effect if —C'is not specified.

The —fexci and —fnoexci options (enable/disable EXCI mode)

The —fexci option instructs DCCPC to run in EXternal Call Interface mode, for
processing files which contain only a special form of the EXEC CICS LINK command.
When run in EXCI mode, no other commands will be translated. Outside of EXCI
mode, this special form of the EXEC CICS LINK command is unavailable.

46 Systems/C Utilities

The —fleasm and —fnoleasm options (enable/disable LE ASM compatibil-
ity)

The —fleasm option changes some macro parameters to create a Language Envi-
ronment conforming assembler program, rather than one to be loaded in the CICS
environment. It should only be used in assembler mode (-A). The default behavior
is —fnoleasm, to generate a program to be executed from the CICS environment.

The —fvse and —fnovse options (enable/disable VSE compatibility

By default, DCCPC generates output compatible with the z/OS or MVS versions

of the IBM CICS preprocessor. However, the CICS preprocessor for VSE sup-
ports a few new commands (SPOOLCLDSE REPORT, SPOOLOPEN ESCAPE, SPOOLOPEN
MAPNAME, SPOOLOPEN REPORT, SPOOLOPEN RESUME, SPOOLWRITE MAPNAME, and SPOOLWRITE
REP0), and has alternative translations for a few others (INQUIRE PROGRAM and
INQUIRE TASK). When —fvse is supplied on the commandline, DCCPC will gener-

ate translations compatible with the VSE preprocessor.

The —fedf and —fnoedf options (enable/disable EDF mode)

The default is —fedf. If —fnoedf is specified then the X’>40° bit in the common flags
area of each DFHECALL invocation is set.

The —v option

The -v option causes DCCPC to produce a banner indicating the version and
copyright information, then to exit with a return code of 0.

Systems/C Utilities 47

48 Systems/C Utilities

DB2PPC

Using DB2PPC

The Dignus DB2 Command Processor, DB2PPC, is used to translate C source
code which uses EXEC SQL commands into normal C code and a DBRM file prior to
invoking DCC. This is especially useful in cross environments where IBM’s trans-
lators cannot be used. For further information about DB2, see the IBM publication

DB2 UDB for z/OS V8 SQL Reference document number SC18-7426-03.

Running DB2PPC

On Windows and Unix, DB2PPC is executed with a command line of the form

db2ppc [options] [input file]
If no input file is specified, input is read from stdin and C output is generated on
stdout and DBRM output is generated in out.dbrm.
If an input file is specified but no output files are specified then the output file names

are based off of the input file name. For example, if the input is file.c, then the
translated C output will be in file pp.c and the DBRM will be in file.dbrm.

Systems/C Utilities 49

When run on OS/390 and z/OS, options may be specified in the PARM statement. If
no input file is specified, the SYSIN DD is used. C output defaults to SYSCIN, which
would typically be used as input for DCC in the next step. DBRM output defaults
to the DBRMLIB DD. Informational and error messages are output to STDOUT and
STDERR DDs. The following JCL could be used on OS/390:

//DB2PPC JOB
//DB2PPC EXEC PGM=DB2PPC,PARM=" options’
//STEPLIB DD DSN=Systems/C load library,DISP=SHR
//STDERR DD SYSOUT=*
//STDOUT DD SYSOUT=x*
//SYSCIN DD C output dataset
//DBRMLIB DD DBRM output dataset
//SYSIN DD *
<C source>

Defining DB2PP global variables

The DB2 Command Processor produces definitions for some global variables, such as
SQLTEMP. When compiled with the IBM C compiler, it defines these global variables
redundantly in each compilation unit, relying on “common mode linking” to clean
up the duplicate definitions. Systems/C and Systems/C++ are designed to conform
with the “one definition rule” instead, so by default these global variables are de-
clared extern, instead of defined. So one compilation unit must provide the single
canonical definition, using the special #define, - DB2PP DEFINE_SYMS. A common
approach would be to add —D__DB2PP_DEFINE_SYMS=1 to the DCC command-
line for one of the compilation units that has been processed with DB2PPC.

50 Systems/C Utilities

DB2PPC Options

Options for DB2PPC are summarized in the table below.

-A/-C process assembly / C source

—d file place DBRM output in the file named file
—I path search for include files in path

—o file place translated output in the file named file

—macext ext

specify file extension to try for EXEC SQL INCLUDE
statements

—flowerinc / —fnolowerinc

enable/disable lowercasing of include filenames

—fmrc / —fnomrc

enable/disable use of mainframe-style return code

—fnewfun / —fnonewfun

enable/disable support for V8 NEWFUN mode

—fattach=mode

specify attachment mode

—fconnect=1 /
—fconnect=2

specify type for CONNECT statement

—fdate=format

specify a date format to override the system default

~fHoat=ieee /
—fHoat=s390

specify type of floating point variables

—fpadntstr /
—fnopadntstr

enable/disable padding of NUL-terminated strings

—fsql=all / —fsql=db2

specify which SQL dialect to accept

—fstdsql

use SQL rules for statements

—fversion=wver

set the version field in the DBRM header

—fcpp

enable C++ mode

—fonepass / —ftwopass

select one- or two-pass preprocessor operation

—ffold / —fnofold

enable/disable folding identifiers to uppercase

—fprog=name

override the DBRM “program name” header field

—fuser=name

override the DBRM “user name” header field

—ftimestamp=hezx

override the DBRM “timestamp” header field

-V

print version information

—fdb2ver=vN

set DB2 compatibility version

—feesid=num

set CCSID

Systems/C Utilities 51

The —A and —C options (process assembly / C source)

The —A option tells DB2PPC to process assembly source code. It implies —ffold
and —ftwopass options, so if you wish to override these options then you must specify
(i.e.) —fonepass at a point after —A on the command line.

The —-C option tells DB2PPC to process C source code. The default is to process
C source code.

The —d file option (place DBRM output in the file named file)

When —d file is specified, DB2PPC generates DBRM output in the specified file. If
—d is not specified, then the output filename is determined from the input filename
with the extension replaced by .dbrm. If no input filename is specified then output
is placed in out.dbrm or the DBRMLIB DD.

The —I path option (search for include files in path)

Any paths specified with —I path will be searched (in the order given) when resolving
EXEC SQL INCLUDE statements. The current directory (“.”) is always searched.

If you wish to include a file with an extension, please enclose the file name in quotes,
as in:

EXEC SQL INCLUDE "file.c"

See also —macext, which specifies other ways to deal with file extensions with EXEC
SQL INCLUDE.

The —o file option (place translated output in the file named file)

When —o file is specified, DB2PPC generates translated C output in the specified
file. If —o is not specified, then the output filename is determined from the input
filename with the extension replaced by _pp.c. If no input filename is specified then
output is on stdout or the SYSCIN DD.

The —macext ext option (specify file extension to try for EXEC SQL INCLUDE
statements)

The —macext option is used to override the default extensions which are searched
when trying to locate a file specified on a EXEC SQL INCLUDE line.

52 Systems/C Utilities

The default behavior when EXEC SQL INCLUDE "F00"; is encountered depends on
the language of the source file. For C++4, the following filenames will be tried in
order for each directory in the —I search path:

F0OO
F00.sqC
F0O0.sgx
FOO.hpp
F00.h

For C, these filenames will be searched:

FO0
F00.sqc
F00.h

And for ASM, these filenames will be searched:

FOO
FO0O.mac

However, if you specify —macext ext then FOO. ext will be searched instead. This way
you can override the default extensions if your include/macro library uses different
conventions.

The —flowerinc / —fnolowerinc options (enable/disable lowercasing of in-
clude filenames)

By default, DB2PPC will leave filenames as they are specified in the EXEC SQL
INCLUDE command. However, for case-sensitive filesystems, it may sometimes be
necessary to reduce all filenames to a uniform lower case, so that EXEC SQL INCLUDE
"FOO" will search for foo.h instead of FOO.h. —flowerinc will cause this translation
to occur.

The —fmrc / —fnomrc option (enable/disable use of mainframe-style re-
turn code)

The —fmrc option specifies that the translator should use mainframe-style return
codes to indicate the exact error level reached. The —fnomrc option specifies that
the translator should use Unix-style return codes that are either 0 (success) or 1
(errors). On OS/390 —fmre is the default, while on cross-platform hosts —fnomre is
the default.

Systems/C Utilities 53

The —fnewfun / —fnonewfun option (enable/disable support for V8 NEW-
FUN mode)

By default, DB2PPC supports the NEWFUN mode of DB2 V8 and produces
DBRM output using UTF-8 character encoding and uses some extended structures.

If —fnonewfun is specified, however, then output compatible with DB2 V7 is pro-
duced, using EBCDIC encoding for the DBRM output.

The —fattach=mode option (specify attachment mode)

The —fattach=mode option is used to specify the function for DB2PPC to use to
attach to the DB2 server. There are three valid settings:

tso Use DSNHLI (default).
caf Use DSNHLI2.
rrsaf Use DSNHLIR.

The —fconnect=1 / —fconnect=2 option (specify type for CONNECT state-
ment)

If —fconmect=1 is specified then DB2PPC generates the type 1 form of the CONNECT
statement. By default, the type 2 form is generated.

The —fdate=format (specify a date format to override the system default)

The —fdate=format option specifies a format to use for date query results that
will override the DB2 default. The following values are supported: —fdate=iso,
—fdate=usa, —fdate=eur, —fdate=jis, —fdate=local. The default is for no date over-
ride to be in place, which can be manually specified with —fdate=default.

The —fHoat=ieee / —flloat=s390 option (specify type of floating point
variables)

If —ffloat=ieee is specified then DB2PPC notes that floating point host variables
are in IEEE format instead of IBM’s HFP format. The default is —ffloat=s390.

The —fpadntstr / —fnopadntstr option (enable/disable padding of NUL-
terminated strings)

The —fpadntstr causes DB2PPC to note that NUL-terminated strings should be
padded out to their full field length. The default is —fnopadnitstr, in which case a
NUL is used to indicate the end of data in the string regardless of length.

54 Systems/C Utilities

The —fsql=all / —fsql=db2 option (specify which SQL dialect to accept)

The —fsql=all option tells DB2PPC to accept all valid SQL syntax, even if it is not
necessarily valid DB2 syntax. The default is —fsql=db2.

The —fstdsql option (use SQL rules for statements)

The —fstdsql option changes the SQLCA area to allow SQL rules for statements.

The —fversion=ver option (set the version field in the DBRM header)

The —fversion=ver option causes the specified string to be placed in the DBRM ex-
tended version header. The string is also placed in the C variable SQLVERS . VERSSTR.

The —fcpp option (enable C++ mode)

The —fepp option causes the preprocessed output to be compatible with C++ com-
pilers. The default is to output code compatible with C compilers.

The —fonepass / —ftwopass options (select one- or two-pass preprocessor
operation)

The —fonepass option is the default and causes DB2PP to process the source in a
single linear pass, so all declarations must come before references. The —ftwopass
option causes DB2PP to process the source file in two passes, first reading decla-
rations, and the second pass generating output.

The —ffold / —fnofold options (enable/disable folding identifiers to upper-
case)

When —ffold is specified, all non-string identifiers will be converted to uppercase.
—fnofold is the default option for C source. —ffold is the default option for ASM
source.

The —fprog=name option (override the DBRM “program name” header
field)

The DBRM output file has a “program name” header field which must match the
member name of the DBRM when it is bound. Otherwise the DB2 BIND step

Systems/C Utilities 55

will produce a “consistency error.” By default, the program name is derived from
the DBRM output filename. If this does not match the actual names used on MVS,
you may use —fprog=name to override the default.

The —fuser=name option (override the DBRM “user name” header field)

The DBRM output file has a “user name” header field. By default, your user
name is determined using the value of the USER environment variable, but you can
override it with the —fuser=name option.

The —ftimestamp=hex option (override the DBRM “timestamp” header
field)

The DBRM output file has a timestamp field that the DB2 server uses to ver-
ify that different pieces come from the same build as a consistency check. If your
build environment gives you cause to mix and match these pieces then you will
need to manually ensure that your timestamps match using this option. This op-
tion takes a hex argument that may be up to 8 bytes (16 hex nibbles) long, i.e.
-ftimestamp=123456789ABCDEFO.

The —v option

The —v option causes DB2PPC to produce a banner indicating the version and
copyright information, then to exit with a return code of 0.

The —fdb2ver=v N option (set DB2 compatibility version)

The —fdb2ver=vN option instructs DB2PPC to emulate compatibility with the
specified version of DB2. The supported values for Nare 7, 8,9, and 10. —fdb2ver=v8,
and that is where the support is most complete.

The —fccsid=num option (set CCSID)

Many translated EXEC SQL commands specify the CCSID to use for database op-
erations. That value can come from an EXEC SQL DECLARE VARIABLE statement,
or it can come from the default value provided with this commandline option. If
—fdb2ver=v9 or —fdb2ver=v10 is specified, then —fccsid=500 is implied if no explicit
—feesid=num is present. Otherwise, for compatibility with older versions of DB2,
the default is —fcesid=37.

The CCSID provided by —fecsid=num does not affect the source code’s character
set.

56 Systems/C Utilities

D2S

Using D2S

D2S is used to convert assembly DSECTs into C struct definitions. D2S examines
ADATA information generated by the Systems/ASM assembler, DASM, or by IBM’s
HLASM assemble. D28 extracts DSECT information from the ADATA file generating
a C structure definition suitable for use in a C or C++ header (“.h”) file.

For example, if the EXAMPLE DSECT was defined as in the following assembly source:

EXAMPLE DSECT

NEXT DS A Address of next element
NAME DS CL30 Customer name
ID DS F Customer ID number

END

then D2S would convert that DSECT into the following C structure:

struct example {

void * __ptr31 next; /* Address of next element */
unsigned char name[30]; /* Customer name */

char __filler0[2];

int id; /* Customer ID number */

};

Notice that D2S preserved the original comments, and has inserted filler in order
to ensure the fields match exactly with the original DSECT definition.

For more information on how to use DASM to generate the ADATA information
required by D28, refer to the Systems/ASM Assembler manual. For more informa-
tion on how to use IBM’s HLASM, refer to IBM HLASM V1R4 Programmer’s Guide
document number SC26-4941-03.

Systems/C Utilities 57

A simple UNIX or Windows DASM command to generate ADATA information in
the file adata would be

dasm -A=adata example.asm

On Windows and Unix, D28 is executed with a command line of the form

d2s [options] input file

When run on 0OS/390 or z/OS, options may be specified in the PARM statement. If
no input file is specified, the SYSIN DD is used. Output defaults to the EDCDSECT
DD. Informational and error messages are output to STDOUT and STDERR DDs. The
following JCL could be used on OS/390:

//D28S JOB

//D2S EXEC PGM=D2S,PARM=’options’
//STEPLIB DD DSN=Systems/C' load library,DISP=SHR
//STDERR DD SYSOUT=x*

//STDOUT DD SYSOUT=x*

//EDCDSECT DD SYSOUT=x

//SYSIN DD DSN=ADATA(FOO),DISP=SHR

58 Systems/C Utilities

D2S Options

—help

display usage information

—S sect_name

specify section (DSECT) to convert

—com=opt / —xcom

control inclusion of comments

—anon / —xanon

enable/disable the wuse of anonymous substruc-
tures/unions

—def / —xdef

enable/disable #define directives for substruc-
tures/unions

—equ=opt / —xequ

control how EQU symbols are converted

—style=~kind

control the style of the generated C structures

—in=count / —xin

control indentation

~lc / —xlc

enable/disable converting names to lower case

—elc / —xelc

enable/disable converting EQU names to lower case

—l=count / —xll

set a maximum output line length

—pp / —Xpp include preprocessor directives to prevent duplicate
definitions
—seq / —xseq enable/disable sequence numbers on the output

—unique=str / —xunique

specify a unique string for building labels

—out=filename

specify a different output filename

—char=type

specify the type to be generated for DS C members

—prefixmap=old,new

specify a string mapping to be performed on member
names

—lengthsuffix=suf

specify unique suffix for length #defines from
—equ=def

-V

print version information

—ds0xl

accept DS 0XL(n) as a synonym for EQU n

The —help option (display usage information)

This option causes D2S to output basic usage information on the stdout stream.

Systems/C Utilities 59

The —s sect_name option (specify section to convert)

The —s parameter specifies that D2S should convert the DSECT named sect_name.
If the —s parameter is not specified then all DSECTSs will be converted.

The —com=o0pt and —xcom options (control inclusion of comments)

Control which comments will be included in the generated C source code. There
are three possible values for opt:

single Include comments that appear on the DS line.
cont Include those comments plus continuations of that DS line.

all Include all comments, including ones that begin their own line.

If —zcom is specified then no comments will be included at all. The default is
—com=single.

The —anon and —xanon options (control the use of anonymous substruc-
tures/unions)

Systems/C and Systems/C++ offer an —fanonstruct option that provides the ca-
pability for union and struct members of another struct to be unnamed (and
the members of the anonymous structures and unions members are then considered
to be members of the enclosing structure). —anon is the default and causes D2S
to generate C code which uses anonymous substructures and unions. Consider the
following DSECT example:

TEST DSECT
A DS OF
A1 DS CL1
A2 DS CL1
A3 DS CL1
A4 DS CL1

60 Systems,/C Utilities

With —zanon it converts to the following C structure:

struct test {

union {
int a;
struct {
char al;
char a2;
char a3;
char a4;

} __structO;
} __unionO;

};

Whereas —anon causes the following C structure to be generated:

struct test {

union {
int a;
struct {
char al;
char a2;
char a3;
char a4;
};
}s
};

The —def and —xdef options (control #define directives)

The —def and —zdef options control the generation of #define directives for sub-
structures/unions. —def is only useful if —zanon is also specified, in which case the
following lines would be generated for the —zanon example:

#tdefine a __union0O.a

#define al __unionO.__struct0.al
#tdefine a2 __unionO.__struct0.a2
#define a3 __unionO.__struct0.a3

#define a4 __unionO.__struct0.ad

—zdef is the default.

Systems/C Utilities 61

The —equ=opt and —xequ options (control EQU conversion)

The —xequ option is the default and instructs D2S to discard EQU symbols. There
are four possible values for opt:

def Output C #defines for EQU symbols.
sym Output C symbols for EQU symbols.

bit Output C bitfields for EQU symbols, using the value of the EQU
as a bit mask.

bitl Like bit, except using the length as a bit mask.

mixed Like bit, except symbols which do not work as bitfield masks are
output as #defines rather than discarded.

For example, consider the DSECT:

TEST DSECT
BF DS CL2
FLG EQU 4,5
FLGS EQU 3

If —equ=def is specified then the following C structure is generated:

struct test {
unsigned char bf[2];
#define flg 4
#define flg_length 5
#define flgs 3

3

Note that the length attribute which was provided for FLG appears in the C code as a
separate #define with “_length” appended to its name. The suffix can be specified
with —suffizlength=suf, which may be helpful if you are experiencing namespace
collisions due to the length symbols.

If you use —equ=sym then D28 will treat the EQU values as offsets into the structure,
generating:

struct test {
unsigned char bf[2];
char __fillerO[1];
unsigned char flgs;
unsigned char flgl[5];

I

62 Systems,/C Utilities

If —equ=bit is specified then the following C structure is generated instead:

struct test {
/* bitfield for bf: */
unsigned int __fillerO : 13;
unsigned int flg : 1;
unsigned int flgs : 2;

};

For —equ=bitl consider the following DSECT:

TEST DSECT
A DS CL4
B DS CL3
BF DS CL2
FLG EQU A
FLGS EQU B

which is converted to:

struct test {
unsigned char al[4];
unsigned char b[3];
/* bitfield for bf: */
unsigned int __fillerO : 13;
unsigned int flg : 1;
unsigned int flgs : 2;

};

FLG and FLGS both inherit length attributes from A and B, and those lengths are
interpretted as if they were bitmask values specifying bitfields within BF.

The —style=kind options (control the style of the generated C structures)

The —style= option provides control over the style of C structures D2S produces.
The valid styles are fold, nest, nestorg, and raw.
When the raw style is specified, D2S does not attempt to reorganize the generated

structures in any fashion. Although this will result in a faithful reproduction of the

Systems/C Utilities 63

assembly language DSECT, the C source can be unpleasant to read if the DSECT
is at all complicated. There will be many union and struct fields with appropriate
filler bytes defined to ensure everything is placed at the correct offset. Also, when
—style=raw is specified, the structure will be “flat” with no nested sub-structures.

When the fold style is specified, D2S will reorganize structures to try to remove
unnecessary filler fields. This can make the structure quite different in order from
the orginal assembly language source.

When the nest style is specified, D2S will again attempt to reorganize the defined
structure to remove unnecessary filler fields. However, it will attempt to recognize
common assembly-language constructs that indicate one element of the DSECT is a
“sub-structure” of the others. In doing so, it will retain the same order of definition
in the generated C structure as was discovered in the original assembly language
source. The result of the conversion when —style=nest is specified are typically more
“C like” while retaining the intent of the original source.

When the nestorg style is specified, D2S will use the same technique for re-ordering
the members as if nest were specified, except that it will use a slightly different
heuristic for ORG mnemonics. The result is often much more sensible.

For example, given the following DSECT:

TEST DSECT

A DS F OFFSET O

B DS F OFFSET 4
ORG B

C DS F OFFSET 4

D DS F OFFSET 8
ORG D

E DS F OFFSET 8
END

64 Systems,/C Utilities

if —style=raw is specified then the following C structure will be generated:

struct test {

union {
struct {
int a; /* OFFSET 0 */
int b; /* OFFSET 4 */
};
struct {
char __fillerO[4];
int C; /* OFFSET 4 *x/
int d; /* OFFSET 8 */
+;
struct {
char __filler1[8];
int e; /* OFFSET 8 */
};
};

when —style=fold is specified, the following C structure will be generated:

struct test {

int a; /* OFFSET 0 */
union {
struct {
int b; /* OFFSET 4 */
int e; /* OFFSET 8 %/
};
struct {
int c; /* OFFSET 4 */
int d; /* OFFSET 8 */
};
};

Systems/C Utilities 65

when —style=nest is specified, the following, more nested C structure will be gener-
ated:

struct test {

int a; /* OFFSET 0 */
union {
int b; /* OFFSET 4 */
struct {
int c; /* OFFSET 4 x/
union {
int d; /* OFFSET 8 */
int e; /* OFFSET 8 x/
};
};
};

when —style=nestorg is specified, it will be a little more tempered in its nesting:

struct test {

int /* FL4A x/ a; /* OFFSET 0 */
union {
int /* FL4 x/ b; /* OFFSET 4 */
int /* FL4 x/ c; /* OFFSET 4 */
};
union {
int /* FL4 x/ d; /* OFFSET 8 */
int /* FL4 x/ e; /* OFFSET 8 x/
}s

};

The —in=count and —xin options (control indentation)

If —in=count is specified then count spaces will be used in nested members of C
structures. —xin is equivalent to —in=0. The default is -in=2.

The —lc and —xlc options (control case conversion)

If —ic (the default) is specified then all symbol names (except for EQU names) are
converted to lower case by D2S. —zlc specifies that the names are to remain in their
original form.

66 Systems,/C Utilities

The —elc and —xelc options (control EQU case conversion)

If —elc (the default) is specified then the names of EQU symbols are converted to
lower case by D2S. —zelc specifies that the EQU names are to remain in their original
form. —zelc may be desirable if —equ=def is used, as C programmers often prefer
that #define constants have uppercase names.

The —ll=count and —xll options (control output line length)

The —ll=count option specifies that the output lines are to be no wider than count
columns. —zll removes this limit and is the default.

The —pp and —xpp options (control guard preprocessor directives)

When —pp is specified, D2S will generate preprocessor directives to guard against
duplicate definitions of the same structure. —xpp is the default and specifies that no
such directives are to be generated.

The directives for an example structure would look like:

#ifndef example__
#define example_

struct example {
3
#endif /* example__ */
The —seq and —xseq options (control sequence number output)

The —seq option causes D2S to output sequence numbers in columns 73-80, implying
-11=72. The default is —zseq which specifies that no sequence numbers are to be
output.

The —unique=str and —xunique options (control label building)

When D2S encounters a symbol with characters which C does not accept, it replaces
them according to the following table:

Systems/C Utilities 67

Character ‘ Replacement value

Q str a str
strn str
$ str d str

The default for str is the empty string, which can be specified with —zunique. If
-unique=_ were specified then the label X$Y would be converted to the C symbol
X.d.y.

The —out=filename option (specify output filename)

The —out=filename option specifies that the C output should be directed to filename.
If no —out=filename is specified then on Windows or Unix “.h” is appended to the
name of the input file and used as the output file. On MVS //DDN:EDCDSECT is the
default.

The —char=type option (specify the type to be generated for DS C mem-
bers)

By default when a DSECT member defined as DS C is encountered, a C member
with type unsigned char is generated. However, sometimes it may be necessary to
use a different character type for compatibility with other declarations, especially
in C++. If —char=char is specified then members of type char are generated. If
—char=signed is specified then members of type signed char are generated. If
—char=unsigned is specified then members of type unsigned char are generated.

For some cases such as oddly-sized members of a non-character type (i.e., DS FL5),
anunsigned char member will be generated regardless of the setting of the —char=type
option. These members are essentially placeholders and do not properly represent
the meaning of the underlying type.

The —prefixmap=old,new option (specify a string mapping to be per-
formed on member names)

Since DSECT members are all in the global namespace, many assembly programmers
use a common prefix for all members of the same DSECT. The —prefixrmap=old,new
option allows you to replace the prefix string with a new string. If the new string
is not provided, i.e., —prefixmap=str, then any prefix of str on a member name is
stripped. The —prefizmap option may be specified more than once, to specify several
different prefixes. The prefix mapping is applied before any other translation on the
member names (such as lowercasing, or @, #, $ translation), so your old string must
exactly match the prefix used in the assembly source.

68 Systems,/C Utilities

The —lengthsuffix=suf option (specify unique suffix for length #defines
from —equ=def)

When -equ=def is specified, an extra #define is generated for EQUs that have
an assigned length attribute. This #define is given a name which consists of
the EQU name followed by the length suffix, which defaults to _length. Since
this could potentially cause namespace conflicts with existing symbol names, the
—lengthsuffir=suf option allows you to specify a different suffix which will be used
instead.

The —v option

The —v option causes D2S to produce a banner indicating the version and copyright
information, then to exit with a return code of 0.

The —ds0xl option (accept DS 0XL(n) as a synonym for EQU n)

When —ds0zl is specified, any DS OXL(n) statements in the ASM source are inter-
pretted as if they were EQU n instead (or EQU O,n if —equ=bitl is in effect).

Systems/C Utilities 69

70 Systems/C Utilities

ASCII/EBCDIC Translation
Table

The Dignus utilities use the following tables to translate characters between ASCII
and EBCDIC. These tables represent the mapping of the IBM Code Page 1047 to
ISO LATIN-1.

ASCII to EBCDIC

ol1]2]3]4a]s5]6|7]8]9]a|B|c|[D|E]|F]

00 01 02 | 03 | 37 | 2D | 2E | 2F | 16 05 15 | 0B | 0C | OD | OE | OF

10 11 12 13 | 3C | 3D | 32 26 18 19 | 3F 27 1C | 1D | 1E | 1F

40 | 5A | 7F | 7B | 5B | 6C | 50 | 7D | 4D | 5D | 5C | 4E | 6B | 60 | 4B | 61

FO | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | 7TA | 5E | 4C | TE | 6E | 6F

7C | Cl|C2|C3|C4]C5]C6|Cr|C8|C9|D1|D2| D3| D4 | D5 | D6

D7 | D8 | D9 | E2 | E3 | E4 | E5 | E6 | ET | E8 | E9 | AD | EO | BD | 5F | 6D

79 81 82 83 | 84 | 8 | 8 | 87 | 88 89 91 92 93 94 | 95 96

97 98 99 | A2 | A3 | A4 | A5 | A6 | AT | A8 | A9 | CO | 4F | DO | A1 | 07

20 21 22 23 24 25 06 17 | 28 29 | 2A | 2B | 2C | 09 | OA | 1B

30 31 | 1A | 33 | 34 | 35 | 36 | 08 | 38 39 | 3A | 3B | 04 14 | 3E | FF

41 | AA| 4A | Bl | 9F | B2 | 6A | B5 | BB | B4 | 9A | 8A | BO | CA | AF | BC

90 | 8F | EA | FA | BE | A0 | B6 | B3 | 9D | DA | 9B | 8B | BT | B8 | B9 | AB

64 65 62 66 63 | 67 | 9E | 68 74 71 72 73 78 75 76 7

AC| 69 | ED | EE | EB | EF | EC | BF | 80 | FD | FE | FB | FC | BA | AE | 59

44 45 42 | 46 | 43 | 47 | 9C | 48 | 54 51 52 53 58 55 56 | 57

HiE | O QW@ e|olo|~w|o|ao|k|w |~ |o

8C | 49 |CD | CE|CB|CF|CC|El| 7 | DD |DE | DB |DC| 8D | 8E | DF

Systems/C Utilities 71

EBCDIC to ASCII

(ol1f2]3f4ls[6l7][s[olalB[c|[D[E]|F]

00 [01 | 02 | 03 |9C | 09 | 8 | 7F | 97 | 8D | 8E | 0B | 0C | OD | OE | OF

10 | 11 12 13 | 9D | OA | 08 87 18 19 92 8F | 1C | 1D | 1E | 1F

80 | 81 82 83 | 84 | 85 17 | 1B | 88 89 | 8A | 8B | 8C | 05 06 07

90 | 91 | 16 93 | 94 | 95 | 96 | 04 | 98 | 99 | 9A | 9B | 14 15 | 9E | 1A

20 | AO| E2 | E4 | EO | E1 | E3 | E5 | ET | F1 | A2 | 2E | 3C | 28 | 2B | 7C

26 | E9 | EA | EB | E8 | ED | EE | EF | EC | DF | 21 24 | 2A | 29 | 3B | 5E

2D | 2F | C2 | C4 | CO| C1 | C3 | C5 | C7T | D1| A6 | 2C | 25 | 5F | 3E | 3F

F8 | C9| CA|CB|C8|CD|CE|CF|CC| 60 | 3A | 23 40 | 27 | 3D | 22

D8 | 61 | 62 63 | 64 | 65 66 | 67 68 69 | AB | BB | FO | FD | FE | B1

BO |6A | 6B | 6C | 6D | 6E | 6F | 70 | 71 72 | AA | BA | E6 | B8 | C6 | A4

B5 | TE | 73 74 | 75 | 76 77| T8 79 | 7TA | A1 | BF | DO | 5B | DE | AE

AC | A3 | A5 | BT | A9| A7 | B6 | BC | BD | BE | DD | A8 | AF | 5D | B4 | D7

B | 41 | 42 43 | 44 | 45 46 47 48 49 | AD | F4 | F6 | F2 | F3 | F5

7D | 4A | 4B | 4C | 4D | 4E | 4F | 50 51 52 | B9 | FB | FC | F9 | FA | FF

5C | F7 | 53 54 | 55 | 56 | 57 | 58 59 | 5A | B2 | D4 | D6 | D2 | D3 | D5

Hibg|glQ|w|s|lo|o|w|o|a|s|w v~ |o

30 | 31 | 32 33 | 34| 3 |3 | 37 | 33 |39 | B3 |DB|DC| D9 |DA| IF

72 Systems/C Utilities

	How to use this book
	Systems/C Utilities Overview
	PLINK
	Using PLINK
	PLINK options
	PLINK control statements
	PLINK autocall processing
	Running PLINK
	Using PLINK to pre-link OpenEdition programs
	Using PLINK to pre-link IBM C objects
	Using PLINK to directly create load modules
	Using PLINK to link programs on OS/390

	Systems/C shared libraries
	Shared library files
	Data references
	Data definitions
	Functions
	Runtime support
	Building a shared library
	Example

	DPDSLIB
	Using DPDSLIB
	Running DPDSLIB
	DPDSLIB examples

	DAR
	Using DAR
	Running DAR
	DAR options
	DAR examples

	DRANLIB
	Using DRANLIB
	Running DRANLIB
	DRANLIB options
	DRANLIB examples

	GOFF2XSD
	Using GOFF2XSD
	Running GOFF2XSD

	DCCPC
	Using DCCPC
	Running DCCPC
	DCCPC Options
	The -v option

	DB2PPC
	Using DB2PPC
	Running DB2PPC
	Defining DB2PP global variables
	DB2PPC Options
	The -v option
	The -fdb2ver=vN option (set DB2 compatibility version)
	The -fccsid=num option (set CCSID)

	D2S
	Using D2S
	D2S Options
	The -v option
	The -ds0xl option (accept DS 0XL(n) as a synonym for EQU n)

	ASCII/EBCDIC Translation Table

